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1 Extended Abstract

Data generation is becoming increasingly decentralized. As a consequence, techniques for building
and continuously updating machine learning models, typically confined to a data center, need to
evolve to encompass geo-distributed data sources if they are to remain relevant and cost-effective.
Timely access to distributed data for the purposes of analytics and machine learning is extremely
valuable but challenging to provide [25, 17, 29, 20]. Scaling up these data and compute intensive
tasks mandates distribution [20]. However, key algorithms for learning, such as stochastic gra-
dient descent, are not trivially parallelizable; distributed implementations often require carefully
re-architecting the underlying computational model [11]. For these analyses, if the global view of
data can be maintained at a single node, extracting parallelism can become significantly simpler.

Data decentralization is pushed further with edge computing. Applications that span edge devices
such as smartphones, home appliances, and sensors, exchange significant amounts of data with
cloud-based services. Autonomous vehicles alone are expected to generate about a Gigabyte of
data every second [28]; edge services can include real-time driving decisions, monitoring and guid-
ance, and fleet-wide situational awareness [30]. These applications require the edge to continuously
consolidate data from a large number of clients and maintain uptodate copies in multiple sites, of-
ten geographically distant, for both availability and performance. The cost of data movement over
wide-area networks is thus a significant hurdle in learning and a driving motivation behind systems
specifically optimized for geo-distributed machine learning [17, 5].

Techniques to accommodate geo-distributed learning largely follow two approaches: 1) a central-
ized approach wherein data from remote locations is migrated, continuously if needed, to a single
data center which relies on conventional machine learning approaches. 2) a decentralized approach
wherein the machine learning computation itself is spread across the remote sites; the different sites
communicate with each other to exchange intermediate state and parameters.

The centralized learning approach has the benefit of leveraging existing algorithms without the need
to create custom distributed, or geo-distributed, variants. However, centralizing data can be pro-
hibitively expensive, as has been noted by others [17]. The decentralized approach can provide
speedup through parallel execution, but requires sophisticated systems and algorithmic enhance-
ments to account for and mitigate the significant communication overhead incurred during the learn-
ing tasks. A recent system, Gaia [17], leverages weaker synchronization semantics to better utilize
WAN bandwidth; Gaia proposes a new synchronization model, Approximate Synchronous Parallel
(ASP), which maintains an approximately-correct copy of the global ML model within each data
center thereby reducing the extent of data transfers. STRADS [19] is designed to extract model par-
allelism in order to accelerate convergence of ML algorithms and improve the learning performance.
A model-parallel algorithm aims to update a subset of parameters on each site — often using the
entirety of available data — while ensuring overall correctness; a model-parallel approach does not
address the issue of the cost of data movement.

Motivated by the observation that for geo-distributed learning, both centralized and decentralized
approaches have associated weaknesses, we pose the following question: can a system provide the
convenience of centralized approaches (i.e., little to no change in the semantics of the ML compu-
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tation) and the benefit of decentralization (i.e., ability to scale out for larger models and improve
performance) at the same time? Since a crucial factor in relieving this tradeoff is the inherent cost
of migrating and replicating data over wide-area networks, we believe it is worthwhile revisiting the
assumptions behind the underlying distributed storage systems that provide the data access.

Replicating data in distributed systems, especially over wide-area networks, is typically both slow
and expensive [4, 23, 24, 27, 2]; tremendous growth in data [28, 18, 26, 21, 8, 9] without com-
mensurate growth in network capacity has only exacerbated the problem [31, 16, 3]. Timely syn-
chronization of distributed replicas under massive data-ingest rates strains the underlying network,
further burdening operational costs [13]. Weaker distributed consistency models relax the timeli-
ness requirement to gain efficiency and availability but do not counter the fundamental drawbacks.
Even with weakened semantics, conventional replication provides exactness, guaranteeing the even-
tual availability of all data; this is overkill for this growing class of applications – in analytics and
machine learning – which requires frequent re-computation on continuously-evolving data.

A geo-distributed datastore that provides fast and cost-effective access to data generated across
widely-distributed nodes can substantively impact the quality and programmability of continuous
machine learning applications. Several open-source and commercial weakly-consistent stores are
highly scalable and well-suited to handle large volumes of data. Commercial NoSQL stores,e.g.,
Dynamo [12], BigTable [7], and their open-source implementations, e.g., Cassandra [6], HBase [15],
are just some of the examples. Many of these are publicly-available as cloud services, and acces-
sible to application developers, or widely deployed in-house; for instance, the largest deployments
of Cassandra at Apple, and Netflix, span over 75,000 nodes storing over 10 PB of data, and 2500
nodes storing 420 TB, respectively [6]. MongoDB is a causally-consistent document store that can
scale to 100s of nodes and ∼Billion documents [22]. Spanner [10] and Mesa [14] are geo-replicated
stores primarily aimed at business-critical applications that require strong consistency at scale. Cos-
mosDB [1] is another geo-distributed database with tunable consistency and horizontal scalability.

However, a differentiation for continuous geo-distributed machine learning, as discussed earlier, is
the requirement for near-instant availability of remote data; the “exact” stores are designed to scale to
large number of nodes and large volumes of data, but are inefficient when it comes to high-velocity
ingest. To overcome the challenges in geo-distributed machine learning services, we propose the
abstraction of an inexact replica for distributed data management. Inexact replicas deliberately, and
controllably, reduce the precision of data that is sent over the network to allow replicas be inexact
copies of each other. The key insight being that replication can turn from slow and expensive to
fast and efficient by embracing data approximation, leading to the cost-effective construction of
highly-available services. The primary challenge is to ensure that the replicas are indeed useful
to performing the computational tasks that they set out to. The system not only needs to control
the nature and extent of the imprecision but, more importantly, ensure that the replicas are actually
interchangeable for the purposes of the ML tasks; for example, a model-parallel algorithm can run on
any replica without noticeable relative degradation in the output quality. The degree of inexactness,
or replica skew, is carefully controlled via a global coordination process to ensure that replicas do
not diverge beyond a (small) pre-specified threshold.

As part of this effort, we are building a geo-distributed datastore specifically designed for analytics
and machine learning applications based on the inexact replica abstraction, providing data replica-
tion at a fraction of the cost of conventional storage systems. The resulting store has a decisively
small time lag between data ingest and completion of replication even over wide-area nodes ingest-
ing in the order of Terabytes of data per day, and reduced wide-area traffic by orders of magnitude.

With our store, centralized machine learning algorithms can operate, near instantly, on the entire
global view of data without modification; the storage system ensures that the data replication costs
are substantially reduced. Distributed algorithms relying on model parallelism can now expect dif-
ferent nodes to operate on all data, leading to more efficient parallel execution. Initial evaluation
of our system on a geo-distributed setup shows promise in reducing wide-area traffic while main-
taining low degrees of replica divergence and high overall accuracy for a forecasting workload. We
believe this opens potential avenues for research exploration in both systems for machine learning
and co-designing distributed learning algorithms in light of the improvements in data access. We
aim to leverage the participation of both systems and machine learning practitioners to further this
discussion and solicit feedback for future work.
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