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Abstract

SummaryStore is an approximate time–series store, designed
for analytics, capable of storing large volumes of time-series
data (∼1 petabyte) on a single node; it preserves high de-
grees of query accuracy and enables near real-time querying
at unprecedented cost savings. SummaryStore contributes
time-decayed summaries, a novel abstraction for summariz-
ing data streams, along with an ingest algorithm to con-
tinually merge the summaries for e�cient range queries;
in conjunction, it returns reliable error estimates alongside
the approximate answers, supporting a range of machine
learning and analytical workloads. We successfully evalu-
ated SummaryStore using real-world applications for fore-
casting, outlier detection, and Internet tra�c monitoring; it
can summarize aggressively with low median errors, 0.1 to
10%, for di�erent workloads. Under range-querymicrobench-
marks, it stored 1 PB synthetic stream data (1024 1TB streams),
on a single node, using roughly 10 TB (100x compaction)
with 95%-ile error below 5% and median cold-cache query
latency of 1.3s (worst case latency under 70s).

1 Introduction

Continuous generation of time-series data is on a signi�-
cant rise, particularly from sensors, servers, and personal
computing devices [78]; an individual µPMU sensor to mon-
itor electricity consumption generates 50 billion samples per
year [18], data centers log hundreds of billions of events per
day [61], and each self-driving car is expected to generate
several petabytes of data per year [80].
Despite disks becoming cheaper, administered storage re-

mains expensive [59]; the growth in data is far outpacing the
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growth in capacity and simply adding hardware resources
to scale up or out is not cost e�cient. Even if one were to
keep adding disks for capacity, as datasets grow, analytical
tasks become progressively slower. In-memory systems are
capable of signi�cantly faster response times but are expen-
sive and do not store data persistently. Time–series stores
thus need to meet the competing demands of providing cost-
e�ective storage while maintaining low response times.
Increasingly, algorithms, not human readers, consume time-

series data.Many of these algorithmic analyses are near real-
time, ranging from data-center monitoring [35, 52, 66], �-
nancial forecasting [51], recommendation systems [56, 60],
to applications for smart homes and IoT [1, 40, 47, 75, 86].
Signi�cant research inmachine learning is devoted to agents
that learn on data over extended periods of time [19, 62, 76,
79]. A survey we performed of the various kinds of analy-
ses (§2) o�ers three major insights into the characteristics
of time–series workloads which mandate a fundamental re-
thinking of time–series storage systems.
First, the analytical tasks explore various aggregate at-

tributes and statistical properties retrospectively for an en-
tire stream, or a sub range, for higher-level applications in
forecasting, classi�cation, or trend analysis. Unlike appli-
cations using key–value stores and �le systems, analytical
tasks seldom subject time–series stores to point queries. Sec-
ond, the vast majority of analyses exhibit a temporal a�n-
ity favoring recent data over older, even when they perform
retrospective querying on the entire corpus. Third, in some
cases, such as anomaly or outlier detection, certain speci�c
events are tremendously more valuable than others.
To overcome the challenges in building stores for large-

scale time-series analysis, we have designed and implemented
SummaryStore. Based on the �rst insight, SummaryStore
embraces approximation to answer analytical queries on the
data. It maintains compact summaries through aggregates,
samples, sketches, and other probabilistic data structures, in
lieu of the raw data. Existing summaries are generic enough
to serve awide variety of queries and new ones can be added.
SummaryStore preserves an interface similar to conventional
time–series stores; applications can 1) insert data and 2) read
data by specifying an arbitrary time range. Since it is an ap-
proximate store, read responses additionally contain a con-
�dence estimate for the answer.

https://doi.org/10.1145/3132747.3132758
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From a scaling viewpoint, uniform approximation leads
to an undesirable linear growth in store size with data. Sum-
maryStore uses the second insight to de�ne a novel time-
decayed approximation scheme and a data ingest pipeline.
Summary construction favors recent data by allocating pro-
gressively fewer bytes for older data; essentially the extent
of approximation increases with age thereby decaying older
data. As shown through evaluation, the resulting store pro-
vides higher overall accuracy to analyses while compacting
the data store sub-linearly or logarithmically.
Finally, the third insight poses a design challenge at odds

with approximation; a summarized representation, while sig-
ni�cantly advantageous from a storage perspective, alone is
insu�cient in ensuring that speci�c events have been cap-
tured. SummaryStore treats events of special interest as land-
marks, stores them in their entirety, and seamlessly com-
bines them with summaries, when appropriate, to answer
queries. Read queries automatically get the accuracy bene-
�t if their time range overlaps with landmarks.
By combining decayed summarizationwith landmarks Sum-

maryStore improves overall accuracy making it feasible to
run a broader range of applications, for example, an other-
wise infeasible anomaly detection, while reaping the stor-
age bene�ts of approximation. SummaryStore also opens
the door to newmachine-learning algorithms by giving prac-
titioners the ability to operatewith signi�cantly larger datasets,
democratizing their analysis. Further, resource-constrained
devices such as smartphones and wearables can locally op-
erate with larger, more sophisticated models.
SummaryStore was evaluated using multiple real-world

datasets and applications and demonstrated high-degrees
of compaction1 for small drops in accuracy. In particular,
Facebook’s Prophet forecasting engine yielded nearly the
same forecasts using SummaryStore for 10x compaction on
three real-world datasets from economics, climatology, and
Internet tra�c. Outlier detection for Google’s cluster man-
agement dataset required about 6x less space using Summa-
ryStore for zero false positives. SummaryStore compacted
synthetically-generated colossal 2 stream data by a factor of
roughly 100xwith 95%-ile error below 5%; in particular, stream
data totaling 1 PB (1024 1TB streams) was compacted by
100x to about 10 TB (1024 10 GB streams). For cold starts, me-
dian latency was 1.3s and worst-case was below 70s; more
typical warm-cache latencies are in order of milliseconds.
This papermakes the following contributionswhich form

the basis for the SummaryStore system implementation.

• Compact time-decayed summaries for time-series data sup-
porting a range of pragmatic power-law [67] decay.

1For raw stream data of size S , and SummaryStore’s decayed size s , com-

paction is de�ned as the factor S/s .
2An informal reference to stream data with terabytes to petabytes of un-

summarized size by virtue of containing billions or trillions of events.

Analysis and Apps Description

BellKor algorithm [56] Movie recommendation system; winner

of Net�ix Prize [23]

Contextual bandits [60] Generate news recommendation

Facebook EdgeRank [53] Temporal decay of news posts

Twitter Observability [35] Archive and analyze operational metrics

at di�erential temporal granularity

Etsy Kale [5] Identify anomalies on recent+old data

Google Prometheus [52] Monitor time-series data-center logs

Facebook Gorilla [66] Monitor time-series data-center logs

AT&T Gigamining [34] Analyze call records in telecom ops

Net�ix Edda [10], Atlas [9] Operational insights+outage analysis

Cohen et al. [31] TCP connections at busy web server

Bremler-Barr et al. [27] Path quality+Internet gateway selection

Smart-home apps [1, 40, 47,

70, 75, 86]

Occupancy sensing, energy monitoring,

HVAC control, security

FinTime [41, 51] Financial time-series analysis

Macrobase [21] Outlier detection in time-series data

Table 1: Analyses Favoring Recent Data Over Older.

• Novel ingest mechanism to unify summarized and land-
mark data to accurately answer arbitrary range queries.

• Rigorous statistical techniques to generate accurate responses
and error bounds for approximate queries.

2 Why Build Stores for Temporal Analytics?

Several popular analyses favor recent data over old and query
retrospectively on historical data; Table 1 summarizes them.

Recommender systems. These often rely on, and bene-
�t from, temporal information tomake recommendations [13,
56, 60]. Koren et al.’s BellKor algorithm [56], which won the
Net�ix Prize [23], makes a distinction between temporal ef-
fects, ones that span extended periods of time and onesmore
recent/transient, for attributes such as movie likeability and
user biases; their analysis requires di�erent scales of tempo-
ral granularity whenmodeling di�erent phenomena leading
to signi�cant improvements on recommendation accuracy.
A detailed survey of the temporal biases of recommender
systems can be found elsewhere [29].

Smart-home and IoT apps. These analyze streams of
sensor data to make decisions and provide services with
the majority sensitive to di�erences in recent and historical
data. One occupancy-sensing app records indicators, such as
luminosity, sound, andCO2 level, over exponentially-increasing
timewindows for e�ciently predicting o�ce occupancy [47].
Another computes both long- and short-term statistics over
sound samples for people-counting in order to control the
HVAC [86]. Similar apps for energymonitoring [1] compute
historical area-under-the-curve for energy meters and tem-
poral energy usage [75]. An app for controlling the thermo-
stat faces an instability in actuation if only a small time win-
dow is considered [40]; an app for detecting physical activity
using accelerometers [70] overcomes the same challenge by
accounting for both recent and historical movement data.
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Figure 1: Stores providing storage vs accuracy tradeo�.

TS Size Cost (USD) Time of Range Query: Secs (Error)

Store (GB) HDD SSD Scan Large Small

In�ux 196 $10 $118 1347 (0) 1263 (0) 27 (0)

SStore

100x 2 $0.1 $1.2 13 (0) 11 (1%) 3 (2%)

10x 20 $1 $12 112 (0) 101 (.1%) 28 (.1%)

Table 2: Cost and runtime for time-series stores. Com-

parison for stream w/ 10 billion events over a year with 20 byte val-

ues. Latency for 3 range-count queries: scan, large range (80% of

full), small range (random 2% of full). Query error in parenthesis

(In�uxDB is always 0). Cost calculated as fractional price for 512GB

SSDs ($0.60/GB) and 4TB HDDs ($0.05/GB) [48].

DevOps and monitoring. Tools for data visualization
and dashboards are commonly deployed across services and
enterprises to monitor operational time-series metrics [6].
Etsy’s Kale identi�es anomalies over recent data and sub-
sequently searches through historical data to �nd similar
anomalies [5]. Twitter’s Observability archives operational
metrics at a lower granularity, for trending and long-term
analysis, whereas higher granularity, performance critical,
data is periodically expired [35]. Sysadmins pose queries
over a variety of activity, recent and historical, including
over data backups in IBM TSM [11], monitoring time-series
data at Google [52] and Facebook [66], and operational in-
sights [9] and outage analysis [10] at Net�ix.

Financial analyses. These are used for forecasting and
identifying trends [41]. For example, a �nancial time-series
benchmark, FinTime [51], lays out the typical queries over
historical market information and ticks for �nancial instru-
ments; it consists of a combination of deep historic queries,
short time-depth queries, and time-moving statistics.

Aren’t existing stores adequate for time-series data?
Figure 1 organizes popular time-series stores per their �ex-
ibility in trading-o� space for accuracy; an in-depth com-
parison is presented in §8. Providing a high degree of trade-
o� poses systems and algorithmic challenges. Conventional
time–series stores enumerate all raw data (enum stores for
short), and a fewmaintain additional aggregations to reduce
query latency, further increasing the cost of data storage;
both these approaches are non-trivial to scale. Approximate
stores provide acceptable, albeit imperfect, answers quickly

Figure 2: SummaryStore system architecture. S, L refers

to summarized and landmark windows.

and at low cost through algorithmic constructs. However,
existing approximate stores are not designed for time-series
data; furthermore, they rely primarily on sampling, and pro-
vide no guarantees for storing speci�c events of interest,
rendering them unviable for most time-series analytics.
Table 2 illustrates the inadequacy of conventional time–

series stores, and the potential bene�ts of careful approxima-
tion, using a simple experiment. A synthetically generated
time-series of 10 billion events is inserted into In�uxDB [50],
a popular open–source time–series store, and SummaryS-
tore. The table lists the resulting store size, cost, and latency
for typical range queries, along with the query accuracy (In-
�uxDB is always 100% correct). Even on this relatively mod-
est dataset, In�uxDB’s storage cost and query latency are
signi�cantly higher compared to SummaryStore. As datasets
grow, the di�erences are bound to be starker, further moti-
vating the need for a new time–series store.

3 Overview of SummaryStore

SummaryStore is built for analytical and machine-learning
workloads which extract insight by analyzing trends, pat-
terns, and other statistical attributes. SummaryStore thus in-
gests time-series data and supports temporal range queries
by maintaining a careful summarization that supports the
analyses. To aggressively compact data while being able to
accurately answer a variety of queries, SummaryStore re-
lies on the insight that most analyses favor recent data over
older, even when they require retrospective analysis over
historical data. SummaryStore thus approximates and de-

cays the majority of data so that the relative contribution
of each data item to the store is scaled down proportional
to its age [32]; time-decayed summaries (TDS) are its novel
construct to represent a data stream3. Figure 2 shows the
system architecture.
SummaryStore represents a time series as windows over

contiguous spans of time; post ingest, most data is subsumed
in summarized windows, a carefully approximated digest in
lieu of raw data, with comparable capability to answer cer-
tain types of queries; a relatively smaller subset of speci�c
entries are stored in full in landmark windows.

3We refer to time-series data as data streams and time-series analytics as

temporal analytics interchangeably.
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CreateStream(decay, [Summary Operators]) Create new stream with speci�ed decay parameters and, optionally, a set of summary operators

for this stream; default set is all available operators.

DeleteStream(stream) Delete the speci�ed stream in entirety.

Append(stream, [timestamp], value[]) Add time-value data to stream; value can be list of attribute–value pairs; timestamp optional.

BeginLandmark(stream) Start new landmark window e�ective now.

EndLandmark(stream) End current landmark window e�ective now.

Qs: Query(stream, Ts , Te, operator, params) Query stream over speci�ed time range using speci�ed summary operator; some querieswarrant

additional parameters (e.g., value when checking membership using Bloom �lter).

Ql : QueryLandmark(stream, Ts , Te ) Query stream over speci�ed time range for landmark time-value entries, if any.

Response Qs: (answer, confidence estimate) Query response when over at least one summarized window: likely answer and error estimate.

Response Ql : {[timestamp], value[]} Query response over landmark windows only: an enumeration of time-value pairs.

Table 3: SummaryStore API.

3.1 Summary operators

Choice of operators: SummaryStore employsmultiple sets
of summary operators. The �rst set records simple aggre-
gates Count, Sum, Mean, and Min/Max. The second set al-
lows frequency estimation and counting throughHistogram,
Quantile, Count-min sketch (CMS), Counting Bloom �lter,
and Hyperloglog counter. The third set answers member-
ship queries using a Bloom �lter. The fourth set allows arbi-
trary queries through a Sampled subset of data. Each chosen
set is well suited to answer speci�c types of queries. For ex-
ample, a sampled summary is highly e�ective for SQL-style
selections and projections, in contrast to aggregates, but in-
e�cient for simple Counts and Sums; for the latter, aggre-
gates can be additionally maintained for a low overhead.
Con�guring summaries: Each stream can be indepen-
dently con�gured to use speci�c summary operators. When
available, a-priori knowledge of types of queries can be used
to con�gure a stream with only the most relevant sets to
save space. In the absence of such information, the default
is to use the entire collection which, typically, tends to still
be substantially smaller than the raw data.
Adding new summary operators: New operators can be
added to SummaryStore as long as they specify a union func-
tion, i.e., two instances of the same type of operator can be
unioned [14] to produce another instance of the same op-
erator. For example, the union of two Counts is addition;
the union of two Bloom �lters, with the same size and hash
functions, is a bitwise OR; for sampling, two windows with
N samples each are re-sampled to a single one with N . The
implication of unioning is discussed in §4; the operators cho-
sen thus far satisfy this requirement.

3.2 Data decay

Summarizedwindows span progressively-longer time lengths
with age, i.e., older windows span larger times compared to
recent. Since windows are allocated a constant storage bud-
get, data decays as it ages by being subsumed in larger-time-
span windows (representing more raw data). For example,
each window’s Bloom �lter [26] is con�gured to the same

hash functions and bit-array size; older Bloom �lters rep-
resent more values, progressively reducing data’s represen-
tation for membership queries. Streams can be con�gured
from a family of decay functions with di�erent compactions.
To store speci�c data at full granularity, as summaries

may inadvertently smoothen out events of interest, at ingest
SummaryStore allows annotating certain intervals of time
as landmarks; these windows are una�ected by the summa-
rization process and are stored in full. SummaryStore care-
fully aligns landmark and summarized windows to support
queries seamlessly over the entire data stream, weaving them
together into one contiguous time span (§4).
Windows are useful logically, in organizing a data stream

as temporal segments to provide bounds on query errors
(§5), and physically, in managing disk I/O. Since windows
are internal to SummaryStore, the application interface re-
mains similar to other time–series stores.

3.3 SummaryStore API

SummaryStore has a simple, yet powerful, interface to write
and query streams as shown in Table 3. For appends, if a
timestamp is not speci�ed, one is assigned using the system
clock. To prune old data, the store relies on decay instead of
explicit deletes. We give a few query examples:

What was the avg. energy consumption last month?

Query(energy_readings, now() - 1 mo, now(), average)
Did a particular node back up last week?

Query(backup_log, now() - 7d, now(), existence, nodeID)
How many times did a user visit the server in 2015?

Query(visitors, 2015-01-01, 2015-12-31, freq, client IP)

Since summaries are maintained at a window granularity,
SummaryStore must handle the necessary imprecision for
queries not window-aligned. SummaryStore uses statistical
modeling to return (i) its maximum likelihood answer to the
query, and (ii) a reliable error estimate as a measure of the
operator-speci�c uncertainty; we discuss details in §5.

3.4 Limitations

The current SummaryStore prototype su�ers from certain
limitations which can form the basis for future work.
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Algorithm 1:Merge algorithm for time-decayed ingest

con�gured :D = decay function, expressed as a seq. of window lengths

(e.g. 1, 2, 4, 8, . . . )

function append(timestamp, value)

W← new summary window

if in landmark then

L← current landmark window

L.append (timestamp, value)

else
W.update (timestamp, value)

summary_windows.add (W)

foreach consecutive summary windows W1, W2 do

if ∃K |
∑K
i=0 D[i] ≤W1.start andW2.end <

∑K+1
i=0 D[i] then

/* i.e. if W1 and W2 are completely contained

inside Kth target window */

merge(W1, W2)

• The set of chosen summary operators can answer a vari-
ety of queries but are nonetheless restrictive in the high-
level analytics they support; new operators can be added
to broaden the scope but come with challenges. Each new
operator requires an error estimator similar to the ones in
§5. Also, not all statistics are unionable, e.g., median.

• SummaryStore can be con�gured to yield a desired com-
paction (§4.2) but the consequent impact on the accuracy
of individual queries is hard to determine a priori. While
higher compaction generally leads to lower accuracy, the
speci�c extent can be unpredictable. Di�erent applications
can have di�erent tolerance even to the same errors.

• Landmarks provide crucial support for handling unsum-
marized data but their identi�cation at the time of data
ingest can be a challenge (§4.3). Landmark criteria need
to be prede�ned and face limitations conceptually similar
to other approximate systems; e.g., strati�ed sampling re-
quires stratum weights con�gured a-priori as well [3].

4 Time-Decayed Data Processing (Appends)

SummaryStore needs amechanism to continually ingest and
decay data; for this it builds on algorithmic work on time-
decayed aggregates [32, 33, 39]. Prior work has shown how
to construct an exponential windowing to approximately
track arbitrary time-weighted counts in integer streams us-
ing Θ(log2 N ) bits, as opposed to the Ω(N ) needed for an ex-
act count [32, 39]. While aggressive exponential decay suf-
�ces for this speci�c problem, we �nd that general work-
loads bene�t from a gentler, more controlled, rate of decay
(§7). Further, SummaryStore must also maintain portions of
the data in landmark windows at full resolution. SummaryS-
tore’s time-decayed summaries and data ingest mechanism
address these challenges by 1) supporting a broad range of
gentle power-law [67] decay functions which are more prac-
tical compared to exponential; 2) integrating landmark and

…

1 2 4 8

1 : 1

2 : 2

3 : 3

3 : 3

4 : 4

5 : 5

5 : 5

6 : 6

1 : 1

2 : 2 1 : 1

2--1 : 3

3 : 3 2--1 : 3

4 : 4 3 : 3 2--1 : 3

4--3 : 7 2--1 : 3

5 : 5 4--3 : 7 2--1 : 3

6 : 6 5 : 5 4--3 : 7 2--1 : 37 : 7

6--5 : 11 4--1 : 107 : 7

14--13 : 27 12--9 : 4215:15 8--1 : 36

W2!W1

W4!W3

W6!W5 ; W4-3!W2-1

range of values : TDS (sum)

window Wj--i

Target Window Spans

LEGEND

window 

merges

Figure 3: Time-DecayedMergeAlgorithmSampleRun.
Evolution of windows using merge algorithm as the stream of num-

bers 1,2,3,4,... is written to SummaryStore con�gured with exponen-

tial windowing [1,2,4,8,..]. Merge operations (∪) listed as they occur.

For this decay, there will be Θ(logN ) windows after N inserts.

summarized windows, carefully aligning them at ingest to
ensure queries perceive a seamless, uni�ed view of the data.

4.1 Windowmerge algorithmfor time-decayed ingest

At the core of SummaryStore’s data ingest is an online proce-
dure that continually recompacts older data, as it ages, to de-
crease its granularity, when new data is added to the stream;
this is essential in maintaining time-decayed aggregates on
a stream since the continuous addition of data forces a con-
tinual evolution of window boundaries. The key primitive is
a merge operation that combines a pair of consecutive win-
dows into one, e�ectively halving the storage budget allo-
cated to the values spanned in the two windows.
Algorithm1 details SummaryStore’s ingest andmergemech-

anism. The algorithm calls less than one amortized merge
operation for every element ingested: the precise cost de-
pends on the chosen rate of decay, with less aggressive de-
cay requiring less frequent compaction. In practice, we batch
appends to further reduce processing cost.
Figure 3 shows a simple example for ingest of the stream

of numbers 1,2,3,4,... using the underlying merge algorithm.
The SummaryStore instance is con�gured with target win-
dow sizes [1,2,4,8,16,..]. Note that these target sizes happen
to be exponential for illustration; in practice, the target win-
dow sizes are de�ned by the speci�c power-lay or exponen-
tial decay function, and can take on any sequence. As an ex-
ample, PowerLaw(1,1,1,1) will de�ne target sizes [1,2,3,4,..].
For simplicity, the time-decayed summary (TDS) in this ex-
ample is con�gured to only maintain the Sum of values per
window. The union ∪ for Sums is simply their addition. The
�rst three inserts (of values 1, 2, 3) create three Summary
windowsW1,W2 andW3 with respective Sums 1, 2 and 3. Af-
ter the third insert, sinceW1 andW2 are aligned within the
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Decay function Parameters Size of store Decay rate (# bits Sequence of window lengths Example storage

after n appends to nth oldest element) growth

Power law p , q, R , S ∈ N Θ

(

R
(

n
RS

)

p
p+q

)

Θ

(

1
S

p
p+q

(

n
RS

)

−q
p+q

)

for k = 1, 2, . . : R kp−1 of length S kq PowerLaw(1,1,10,1) =
√

N
10

Exponential [39] b ∈ R, R , S ∈ N Θ
(

R logb
n
RS

)

Θ

(

1
S logb

1
n

)

for k = 1, 2, . . : R of length S bk Exponential(3,1,5) = 5 log3 N

Table 4: Decay functions in SummaryStore. Family of Power Law and Exponential decays con�gurable in SummaryStore. Appen-

dix A provides detailed description and derivation of these results.

Figure 4: Challenge in answering sub-window queries
for Summarized and Landmark windows. Q1 asks Sum

over summarized only, Q2 over summarized and landmark. For the

�rst window, 24 refers to the sum for 8—6 and 2—1; {3,4,5} are ex-

cluded from summaries and included in the landmark window.

Individual stream size

PowerLaw (p , q, R , S ) 10 GB 100 GB 1000 GB

(1, 1, 88, 1) 1.1x 3.4x 11x

(1, 1, 16, 1) 2.5x 7.9x 25x

(1, 1, 8, 1) 3.5x 11x 35x

(1, 1, 4, 1) 5x 16x 50x

(1, 1, 1, 1) 10x 32x 100x

(1, 2, 48, 1) 22x 100x 480x

(1, 2, 5, 1) 100x 460x 2200x

Exponential (b , R , S ) 10 GB 100 GB 1000 GB

(2, 88, 1) 120x 1100x 9700x

(2, 32, 1) 320x 2800x 25000x

(2, 1, 1) 8600x 77000x 700000x

(3, 1, 1) 14000x 120000x 1100000x

Table 5: Storage compaction evolution w/ decay con-
�gurations. Column name = size of raw data, increasing over

time; compaction = (size of raw data)/(size of SummaryStore). The

parameters of the power-law decay function map to di�erent win-

dow lengths and consequently di�erent compactions; admins can

refer to table as rule-of-thumb for con�guring.

same targetwindow boundary (of length 2), they aremerged
into a single windowW2−1 with Sum 3. A similar merge re-
sults after another two inserts (4, 5), leading to the windows
W5,W4−3 andW2−1 with Sums 5, 7 and 3. After the next two
inserts (6, 7)W2−1 andW4−3 are in turn merged, as areW5

andW6, to result inW7,W6−5 andW4−1 with Sums 7, 11 and
10. Each window contains a single Sum over progressively-
increasing numbers of values tracking the desired decay. This
wave-like process repeats itself on each insert; in steady-
state, window merges are amortized and, for exponential,
leads to Θ(logN ) windows after N inserts.
After a merge, the new window inherits the start time of

the earlier window, the end-time of the later window, and a
union of the Sums in the two windows. The TDS typically

maintains a richer set of data structures and the merge en-
tails the union of all the operators.

4.2 Understanding and con�guring decay functions

The decay function governs the rate of decay of a time series
and manifests as the sequence of window lengths. Summa-
ryStore introduces gentler power-law decay functions, in
addition to exponential, allowing storage growth rates of

Θ(n
p

p+q ), as listed in Table 4. The parameters of the power-
law decay function p, q, R, S dictate the sequence of window
lengths and the decay rate to control the overall compaction
for a stream. Table 5 shows the growth in storage footprint
as a stream of 16-byte tuples is written to the store, for var-
ious con�gurations of the power-law parameters.
Parameters p and q control the overall rate of growth. For

instance, with (p,q) = (1, 1) storage use grows as O (
√
N );

thus in the �rst �ve rows of Table 5, as the amount of raw
data ingested grows 100x from 10 GB to 1000 GB, the size

of the store increases by
√
100x = 10x. Note that growth is

always sublinear with power-law decay: storage use always
grows more gently than the rate of data arrival.
R and S throttle growth by constant factors. Essentially,

R ∗k (p−1) windows are created for lengths S ∗kq , with mono-
tonically increasing k . For example, with PowerLaw(1,1,1,1),
exactly 1 window each for lengths 1,2,3,..., will be created
compared to 16 for PowerLaw(1,1,16,1), and overall com-

paction with the latter decay is always
√
16 = 4x lower, as

Table 5 shows. The larger the value R, the more staggered
the growth of windows, and the gentler the decay. Table 5
serves as a rule-of-thumb reference for con�guring Summa-
ryStore compaction.
Unlike the broad con�guration space enabled by power-

law decay, with incremental factors of growth, exponential
decay always compacts aggressively. Setting large values
for the throttling factors R and S can barely contain the ex-
ponential growth in small streams, e.g., Exponential(2,88,1)
in Table 5; as data volumes increase, window sizes grow
rapidly, and eventually the size of the store almost becomes
a constant, growing asO (logN ), as Table 5 shows.

4.3 Landmark Windows

Theprevious example showswindow construction andmerge
for SummaryStore with only summarized windows; the al-
gorithm can also handle the additional challenge of merging
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landmarks. A landmark window stores in full resolution any
data that lies within its time span. Of course, the larger the
extent of the landmark, the more storage space it consumes.
SummaryStore provides themechanisms for applying land-

mark annotations (begin and end) but leaves the policy deci-
sion of identi�cation to the application; we’ve tested with
simple ones, such as the Three Sigma rule (value > 3σ [4]),
that often su�ce but are by nomeans exhaustive. The sysad-
min or the data scientist using SummaryStore can apply
more sophisticated domain-speci�c rules as needed.
Figure 4 revisits the example in Figure 3with values {3,4,5}

as landmarks instead.W8−1 still spans the same time period,
but its TDS:Sum only represents the Sum of the values 1..2
and 6..8, maintaining the three values {3,4,5} separately in
full. Essentially, every landmark window “hollows out” the
time span from each Summarized window it overlaps. The
windowmerge algorithmonlymerges Summarizedwindows
and leaves landmark windows intact. As we discuss in §5,
this does not adversely a�ect the accuracy of any query; for
instance, a Sum overW8−1’s time span will use the TDS:Sum
and the Sum of the contained landmarks yielding the same
answer (36) as before. In addition, a query seeking speci�c
values within LM1’s time span will get a precise answer.

5 Answering Temporal Queries (Reads)

As an approximate store, SummaryStore needs to provide 1)
an accurate likely answer, and 2) a reliable quanti�cation of
error. For many queries, in the absence of a precise answer,
the store must supply its most likely estimate, as shown in
Figure 4; given that it only knows the SUM for an entire win-
dow, what should SummaryStore return for the sub-window
queries Q1 and Q2? One option is storage-intensive mod-
els such as an autoregressive moving average (ARMA) [83]
which defeat the purpose of summarization; SummaryStore
instead employs storage-e�cient statistical heuristics.

5.1 Providing likely answers

For count-oriented queries, e.g., Count, Sum and Frequency,
in the absence of any additional per-window metadata, the
answer proportional to the normalized sub-window length
l turns out to be the maximum likelihood answer. The proof
(Appendix B) follows from the linearity of counts and the
fact that since the arrival process cannot localize inside win-
dows, two queries within the same window with identical
sub-window durations must have the same answer.
For summarized windows alone, the proportional length

provides the best estimate; in Q1, 0.8 ∗ 42 = 33.6. In the
presence of landmarks, the best response is the cumulative
of summarized windows, proportional to the query overlap
excluding any landmarks, along with precise enumeration
in the landmarks; in Q2, (0.3 − 0.2) ∗ 24+ (3 + 4 + 5) = 14.4.

For membership-oriented queries the response remains
the same as the full window, it being infeasible to answer
proportionally. The con�dence estimate re�ects the increased
error uncertainty (§5.2).

5.2 Providing reliable con�dence estimates

Usingwindow summaries alone, SummaryStore can provide
large and potentially less useful upper bounds for the er-
ror, while maintaining extra metadata per-window can be
memory intensive. Instead, SummaryStore uses novel sta-
tistical methods developed to construct reliable con�dence
estimates. The methods are frugal with storage; SummaryS-
tore tracks only four values over the entire stream – mean
and variance in interarrival times, and mean and variance
over values in numeric streams – to estimate query errors.
SummaryStore does not rely on individual tests for distribu-
tional �t since the general cases subsume the speci�c ones;
this also ensures that the stream model is both compact and
independent of the size of the stream. Table 6 lists the meth-
ods; proofs are presented in Appendix B.We illustrate through
two example operators, Count and Bloom Filter, which re-
quire di�erent statistical constructions.

Count: a default response is the upper-bound 100% con-
�dence interval [0,C], which can be too wide to be of prac-
tical use. If the stream is known to be Poisson, a signi�-
cantly tighter estimate is possible: the memorylessness of
the Poisson process means each arrival is independent and
uniformly at random in [T1, T2], thus the distribution of ar-
rivals in a sub-window [t1, t2] has a simple Binomial shape.
For general i.i.d. interarrivals, a closed-formanalysis turns
out to be much more di�cult. However, for large window
sizes, where in fact reliable error estimates matter the most,
renewal-theoretic techniques [36] can be used to approxi-
mate the arrivals by a normal distribution (Appendix B).

Membership (using Bloom �lter): If we have a single
Bloom �lter over the values in [T1, T2], how do we use it to
answer membership queries on the sub-range [t1, t2]? An
additional challenge here is that unlike counters, Bloom �l-
ters are themselves probabilistic data structures which can
return false positives [26]. Our error analysis must thus rea-
son jointly about this data structure error and the error due
to sub-window interpolation.
Precisely, if the Bloom �lter returns false for [T1, T2]

(with 100% certainty [26]), the answer remains the same
for [t1, t2]. If it returns true, we need to compute an up-
dated false-positive rate.While it is possible to de�ne a false-
positive rescaling with a simple Bloom �lter, a more precise
answer is possible if we use a frequency data structure such
as a counting Bloom �lter (useful summary on its own too).
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Query Method for Error Estimation

count[a, a+t] (generic) N
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)

)

membership(v)[a, a+t] For Bloom �lter with FP probability p : p t
T

membership(v)[a, a+t] For CMS: Pr (Hypergeom(C, S, V ) > 0)

frequency(v)[a, a+t] Hypergeom(C, S, V )

S = normal distribution of count[a, a+t] (generic) in �rst row

V = distribution over frequency(v)[entire window]; v refers to values

Table 6: Statistical methods for sub-window queries.
Error estimation methods developed for sub-window queries us-

ing stream modeling. SummaryStore maintains interarrival mean,

stdev (µt , σt ), and value mean, stdev (µv , σv ) for an entire stream,

not per window, which are used in these methods.

For a Poisson arrival process, the probability of the an-
swer lying in the subrange can be modeled after a Bino-
mial distribution with N occurrences of value V per the fre-
quency summary. For i.i.d. arrivals, we rely on the nor-
mal distribution for Counts to model the probability distri-
bution as Hypergeometric (Appendix B).

6 Implementation

SummaryStore is implemented in about 7500 lines of Java
code. The implementation supports all the operators and
decay functions from §4 and exposes an extensible API to
allow new decay functions and summary data structures.
Currently SummaryStore uses RocksDB [72] as the stor-

age backend, augmented with an in-memory cache to speed
up window accesses; the choice was made primarily for its
good append performance and is not tied to the architec-
ture (Figure 2). Windows are stored as objects keyed by a
unique ID. We assign IDs to lay out windows (i) grouped by
stream, and (ii) sorted in temporal order within each stream,
in each level of RocksDB’s LSM tree. Each window consists
of a con�gurable number of summary data structures. We
augment RocksDBwith two in-memory indexes to improve
performance: a tree mapping time ranges to windows, used
when processing queries, and an e�cient heap used by the
merge procedure (Algorithm 1) to identify candidate win-
dow merges when ingesting new data.
Data is bu�ered on ingest and processed into the store

in batches. SummaryStore serializes all window objects us-
ing ProtoBuf [2] which simpli�es the on-disk representation
across data structures, for example, a variable-length bit ar-
ray in Bloom �lters. SummaryStore uses the Apache Com-
mons Math library [20] for statistical calculations (such as
inverting Normal andHypergeometric distributions) needed
when computing error estimates.

7 Evaluation

These questions motivate SummaryStore’s evaluation:

• Can it run compelling real-world applications? (§7.1)

• What is insert and query performance for “colossal” stream
data? Can querying be done accurately at scale? (§7.2)

• Do error estimates improve at lower compaction? (§7.3)

• How does it perform for various application traces? (§7.4)

The default setup is a server with two 8-core 2.5GHz In-
tel Xeon CPUs, 64GB RAM, and 5400rpm 500GB disks. The
on-disk size (“du -s”) bene�ts from ProtoBuf and RocksDB
compression. To ensure comparability, we exclude this in
the paper, and report compaction as measured post ingest
and prior to disk write.

7.1 Real-world applications

We evaluate SummaryStore’s e�ectiveness in running com-
plex, real-world applications; we chose forecasting and out-
lier detection as they represent two challenging workloads
with very di�erent sets of requirements.

7.1.1 Forecasting on time-series data

Workload. Many applications (§2) use forecasting tech-
niques to predict future values based on the past. We use
Facebook’s Prophet [77], an open-source engine for fore-
casting time-series data built on the popular Stan language/
library for maximum likelihood estimation [28]. Prophet is
reportedly employed in a variety of applications across Face-
book [68], including capacity planning, workload forecast-
ing, and decision-making. We partitioned each time-series
from several chosen datasets into train and test data, and
con�gured Prophet with di�erent SummaryStore instances
holding training data as full enumeration (no decay or sam-
pling), SummaryStorewith uniformly-sampleddata, and Sum-
maryStore with time-decayed samples (both power-law and
exponential). The uniform-sample store represents the base-
line approximate store; intuitively, if this store matches or
outperforms time-decayed summaries, decay is not helpful
and uniform approximation is su�cient.
We issued Prophet forecast queries for each time-series in

each dataset and compared accuracy against test data. The
tests for both uniform and decayed stores were run for var-
ious levels of storage compaction.

Dataset. We run unmodi�ed Prophet to make forecasts
on three varied, real world, time-series datasets: Wikipedia
tra�c[84], NOAA GSOD weather[64], and Federal Reserve
economic[45]. The Wiki dataset contains per-page hourly
tra�c statistics for Wikipedia articles going back to 2007
(∼5TB). The NOAA dataset (∼800GB) contains global sur-
face weather data from the USAF Climatology Center col-
lected daily from over 9000 stations between 1929 and 2016.
The Econ dataset has 420K time series from 81 sources cov-
ering a variety of �scal and economic indicators such as con-
sumer price indexes, employment and population.
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Figure 5: Forecasting accuracy for Facebook Prophet using SummaryStore. All three lines are SummaryStore instances

con�gured to consume the same total storage but with di�erent approximation (uniform sampling w/ no decay, exponential decay, power-

lawdecay). y-axis ismedian increase in forecast error with 1x being the baseline achieved with all of raw data. x-axis is storage compaction

for three datasets: Econ, Wiki, and NOAA; SummaryStore with power-law decay outperforms uniform and exponential for all three.
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Results. SummaryStore instances with Uniform, Expo-
nential (b=2), and PowerLaw decay (p=1,q=9) are evaluated;
parameters R and S are varied to change the level of com-
paction for both exponential and power-law. We partition
each time series using the last 10% as test data and the re-
mainder as train data. Figure 5 shows the median percent-
age increase in forecast error relative to the baseline with
the unsummarized dataset; there are three takeaways.
First, SummaryStore is remarkably well suited for real-

world forecasting under diverse workloads; the di�erence in
accuracy is imperceptible at signi�cant levels of compaction,
making it a viable storage system. At 10x compaction, the er-
ror is barely noticeable (< 1%); in fact, for Econ, there is a net
improvement of∼15% due to decay diminishing the e�ect of
older outliers in the stream. For the other datasets, the error
remains < 10% for 20 − 30x compaction. These are signi�-
cant gains already; if the Prophet algorithmwere to be tuned
to leverage time-decay, we believe there are further gains to
be had. Second, power-law decay as introduced by Summa-
ryStore outperforms exponential, across the board and, by
substantial margins in two of the three datasets (30 − 40%
in NOAA and Wiki). Exponential decay heavily favors the
most recent observations; while this works to its advantage

in Econ, by helping avoid older outliers in the stream, in
Wiki and NOAA this loss of historical information leads to
a signi�cant reduction in accuracy. Third, power-law signif-
icantly outperforms uniform, about 20-30% better for Econ
andWiki. For NOAA, uniform and power-law perform com-
parably. The reason lies in the regularity of theNOAAdataset,
a daily list of temperatures over 100 years; the regularity of
the dataset makes it highly predictable for both.

7.1.2 Outlier detection

Workload. Outlier and anomaly detection are key appli-
cations in time-series analytics. While approximation poses
a challenge to outlier detection, we show that SummaryS-
tore can leverage landmarks to e�ectively support such anal-
yses at signi�cant cost savings, thus showing that the store
can cater to a highly diverse set of analytical applications.
We run an outlier detection workload a commercial ana-

lytics service [58] uses to process operational data from its
customers; the workload divides time into a number of small
intervals and runs a standard boxplot statistical test [63, 65]
on each interval to check for the presence of outliers.

Dataset. We use CPU utilization logs from Google’s clus-
ter dataset [71, 85] with 1.2 billion observations over 29 days.
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Results. The baseline result is a list of time intervals iden-
ti�ed as containing outliers using an enum store. Figure 6
shows the relative increase in false positives using Summa-
ryStore. The dataset is particularly outlier-heavy with 60%
of windows containing at least one outlier making it di�-
cult to summarize. On the x-axis, the �rst bar shows that at
10x compaction, and no landmarks, SummaryStore yields
roughly 23% more FPs (no false negatives). With an addi-
tional 2.5% storage for landmarks, FP rate drops to 20%, and
with 5% drops further to 14%. At 7.5% landmarks, the store is
able tomaintain all the anomaly events and the rate drops to
0%; an e�ective compaction of roughly 6x. As a sanity check,
if the space were instead given to summarized windows for
a net 6x compaction, the FP rate merely drops to 19%.
As a contrast, we also ran a query to computemoving av-

erages, a typical aggregation query, for which, as expected,
error reduces with decreasing compaction; more so when
the space is given to summarized windows instead. How-
ever, for the same storage as the 6x summary-only con�g,
the 10x w/ 7.5% LM performs only slightly worse (< 10%)
for the averages while being signi�cantly better for outliers,
providing an operating sweet spot. SummaryStore is thus ef-
fective, and e�cient, for certain specialized workloads at a
modest storage increase, alongside aggregation workloads.

7.2 Scaling to “colossal” data streams

The goal here is to evaluate a SummaryStore instance con-
taining 1 PB worth of stream data, on a single node, in terms
of performance (throughput, latency) and query accuracy.

7.2.1 Performance

Write Throughput. These experiments were run on the
default server but with 224GBDRAM and a software RAID0
(striped) over 12 1TB disks. Figure 7(a) shows ingest perfor-
mance for 1 PB of synthetic stream data consisting of 1024
1TB streams each with 62.5 billion 16 byte time-value pairs
(8-byte timestamp, 8-byte value). SummaryStore was con�g-
ured to decay with PowerLaw(1,1,1,1) for 100x compaction
leading to a summarized store of ∼10 TB. For memory ef-
�ciency, the data was ingested in batches of 8 streams al-
lowing the entire summarized working set to stay memory-
bound, yielding an ingest throughput of roughly 50 TB/day
or 36 million inserts/sec. Disk-bound SummaryStore ingest
is ∼10x slower. In comparison In�uxDB took about 27 hours
for 10 billion inserts (∼200 GB) at a steady 100K inserts/sec.

Query Latency. Figure 7(b) shows the distribution of re-
sponse times for a total of 16000 queries over all time ranges
described in §7.2.2; each query asks for the Count in a time
range on a random stream and results are computed for 1000
trials in each range. All measurements are with a cold cache:
we drop the in-memory SummaryStore, RocksDB and (ker-
nel) page caches before every single query. In practice, queries

Figure 8: De�ning Query Age and Length.

would typically bene�t from caching so these are worst-case
bounds. We �nd that latencies are stable and low, with me-
dian 1.3s and worst-case under 70s. SummaryStore outper-
forms In�uxDB by orders of magnitude; SummaryStore’s
1PB instance hasworst-case latency <70s compared to 1200s
for a 200GB In�uxDB instance (Table 2).

7.2.2 Accuracy, performance formicrobenchmarks
Due to temporal decay, two attributes a�ect query outcomes,
namely age and length; Figure 8 de�nes these for a query
over [T1,T2]. We �rst describe the metrics in this evaluation
– error, con�dence intervals, and latency – followed by the
workload, datasets, and results.

• Query Error: With decay query error is expected to be
worse over older data relative to recent. Error is expected to
increase with age. For query length, error is dictated by the
extent of the overlap with aligned windows. As discussed
in §5, while summaries are maintained at a window gran-
ularity, queries don’t need to be. Error is generally expected
to decrease with length, with some exceptions.

• Con�dence Intervals (CIs): For a given precision, e.g., 95%-
ile, we measure CI widths relative to the baseline answer;
a smaller width indicates a more precise, and useful, error
bound. SummaryStore’s con�dence in the answer follows
the same trend as the error. CI width is expected to increase

with age and generally decrease with length.

• Query Latency: Summarization reduces the amount of
data to be read for a query lowering latency overall. Since
older data is more summarized, latency is expected to de-

crease with age. Similarly, with more data read, latency is

expected to increase with length.

Workload. We organize time into 4 temporal ranges of
the order of minutes, hours, days, and months for a syn-
thetic data stream spanning an year; a given query is charac-
terized by independently selecting both an age and a length,
for a total of 16 (age, length) classes.We have chosen calendar-
based ranges as they are intuitive to data scientists and sysad-
mins as well as widely understood [11, 35, 51].
While di�erent workloads will include a di�erent mix of

(age, length) queries, in our evaluation, we make no assump-
tion about the relative predominance of query classes. In re-
ality, for a given deployment, one typically expects to have
some insight into the nature of the queries or their temporal
distribution [49] which can be helpful.

Dataset. To simulate di�erent real-world data streams,
we generated synthetic data with three di�erent arrival pat-
terns: exponential Poisson with λ = 62.5 billion/year, and
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two heavy-tailed Pareto arrivals, with a �nite mean and vari-
ance (α = 2.2), and a �nite mean but in�nite variance (α =
1.2); our parameter selection is in�uenced by well-known
studies [22, 37]. Values are chosen uniformly at random from
a �nite range. Stream dataset totaled 1 PB on a single node
with 1024 1TB streams each with 62.5 billion 16 byte entries
(8-byte timestamp, 8-byte value).

For all microbenchmarks,we con�gure SummaryStorewith
four operators on each dimension: Count, Sum, Bloom �l-
ter, and Count-Min Sketch (CMS). Count and Sum are both
8-byte Longs; for the Bloom �lter and the CMS, we chose
a con�guration with 5 hash functions, and a width of 1000;
this corresponds to a 1% false-positive rate for the Bloom �l-
ter [26] and a SummaryStore window size of roughly 40KB.
Note that selecting a larger Bloom �lter width will lead to a
corresponding increase in window size.

Results. Figure 9 presents a series of heatmaps for the
described setup. The heatmaps show all three evaluation
metrics for the four query operators; all heatmaps are from
queries on the same instance of SummaryStore, providing a
composite view of accuracy, performance, and storage com-
paction. Each heatmap is annotatedwith the query (e.g., Count)
on top left, the metric (e.g., error) at top center, and the de-
gree of compaction on top right. The x- and y-axes show
query age and length respectively. Each axis is divided into
4 (age, length) classes, for a total of 16 cells; each cell shows
a value and is shaded based on the value – the darker the
shade, the higher the value. For all three metrics, namely,
error, latency, and CI width, the larger the value (the darker
the shade) the worse it is. Note that the errors are a�ected
by the size of individual streams within a SummaryStore in-
stance, which in this case is 1TB, while query latency is af-
fected by the total size of the store across streams (1 PB).
Error: We �rst present the results for the in�nite variance

Pareto streams (α < 2) which are extremely unpredictable
and represent a pathological case for SummaryStore’s sum-
marization; shown in the �rst row of Figure 9.
Each cell represents the 95%-tile error for a repeated run

of 1000 queries all belonging to the same (age, length) class
and is thus statistically signi�cant. For Count and Sum,most
cells are white, implying errors less than 10%; in fact, most
errors are below 5%. At smaller age, the proportional sta-
tistical response proves e�ective. The high data arrival rate
leads to a large number of events packed into windows; this
makes sub-window queries more predictable and consider-
ably reduces errors. The queries that do performpoorly, shaded
darker, are ones that pose an age in months, going back to
severely decayed data, and a length in minutes or hours, a
relatively tiny fraction of a potentially large-span window;
this is as expected, particularly given the in�nite variance

arrivals which stretch the limits of the sub-window statisti-
cal techniques.
Most Bloom �lter queries are accurate, except for month-

age queries, similar to Count and Sum. The answer turns
out to almost always be true: since we generate values uni-
formly from a �nite set at a high arrival rate, over long time
spans every value is very likely to be seen at least once. How-
ever, the frequencies of individual values exhibit signi�cant
variability [25] which a�ects the CMS, where we �nd errors
of up to 5% except, again, the month-age queries.
CI width: As with errors, the CI width for Count, Sum

and CMS is small for non-month-aged queries over small
lengths. Bloom �lter CIs are wide because at this aggressive
level of compaction, SummaryStore needs to maintain very
wide windows covering millions of elements each, and in
the absence of additional windowmetadata it is not possible
for the Bloom �lter to localize the true results.
Latency: As can be seen, cold-cache latencies are < 1minute

in the 95th %-ile in all query ranges. Latencies are largest in
queries scanning days and months (read >10% of a stream).

Other stream arrivals. In�nite variance Pareto streams
are an extreme. Figure 10 shows the error and CI width for
more typical Poisson arrivals; latency is quite comparable to
Figure 9 and hence omitted. Uniformly low errors demon-
strate the e�ectiveness of SummaryStore’s statistical tech-
niques, which in this case bene�t from a more predictable
arrival process. CI width signi�cantly improved for all but
Bloom �lters; the reason again lies in the underlying time
span of SummaryStore’s windows at this massive scale. For
�nite variance Pareto streams α = 2.2, observed results (not
shown) were similar to Poisson with marginally higher er-
rors and CI widths.

Takeaway. These results collectively demonstrate that
SummaryStore can indeed scale to “colossal” streaming data;
its statistical techniques are e�ective and accurate, for most
queries, under high degrees of compaction; there do exist a
few large-age small-length queries that perform poorly.

7.3 Con�dence stimates at lower compaction

7.3.1 CI widths at 5x compaction. Figure 11 shows
only CIwidth heatmaps for a lower-velocity Poisson stream;
while we omit error and latency heatmaps for brevity, errors
continue to stay low and latency does not exceed 100ms. In
this experiment, the focus is on the source of the one re-
maining imprecision, the CI widths. We present results for
a more moderate 5x compaction using PowerLaw(1,1,2,1).
Note that this is for a smaller 5 GB/stream dataset gener-
ated by a lower-velocity Poisson process (λ = 10/s). The
same experimental setup, and compaction, but with Expo-
nential(2,142,1) decay yielded strictly worse errors ranging
from 10% to 200% relative to PowerLaw (not shown).
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Figure 9: Query error, CI widths, latency for 1 PB (1024 x 1 TB) data streams; MicroBenchmarks: Count, Sum,
Bloom �lter, CMS. Decay PowerLaw(1,1,1,1) with ∼100x compaction. Pareto arrivals (α = 1.2) with∞ variance. For all, larger values and

darker shading are worse; for errors and CI width, unshaded cells imply value < 10%. Latency in seconds. x-axis bins: Age, y-axis: Length.
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Figure 10: Query error, CI widths for 1 PB (1024 x 1 TB) data streams. Change with Fig 9 is Poisson arrivals; similar latency.
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Figure 11: CI widths for MicroBenchmarks. Slow Velocity, Lower Compaction (5x) w/ Decay PowerLaw(1,1,2,1); Poisson (λ = 10).
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Figure 13: Query error and CI widths for MLab. De-

cay PowerLaw(1,1,4,1) giving 5X compaction; we omit latency for

brevity.

With the reduced decay, SummaryStore generates a higher
number ofwindows, reducing their average time-spans. Since
the CI upper bound tracks the largest window spans, its re-
duction improves the con�dence estimates, especially for
Bloom �lter, despite the higher stochastic variability intro-
duced by the sparser (lower-velocity) arrivals.
CI widths for all Count and Sum queries are su�ciently

low, the maximum being 7.5%. All but two cells for Bloom
�lter have widths less than 17%, the two exceptions being
56% and 84%; a marked improvement from Figures 9, 10.

7.3.2 Understanding the pro�le of error estimates.
To further explain the estimation procedure in sub-window
queries, Figure 12 shows how error varies with increasing
query lengths for Count and Bloom �lter; speci�cally, we
keep query age constant at 0, aligned with a window bound-
ary, and vary length t from 0 to the full window lengthT .
In the Count query, note that both empirical error and

CI width are largest near the middle of the interval and fall
to 0 near either edge. This is because estimating the count
for the sub-window [T1, T ] given the count for [T1, T2] re-
quires the same information as estimating the count for [T ,
T2]: what matters is the (minimum) distance to either end
of the interval, which is largest for queries that overlap ex-
actly half the interval. CI widths show an elliptical pro�le

proportional to
√

t/T ∗ (1 − t/T ) (§5).
In Bloom �lters, a similar symmetry does not result since,

by de�nition, Bloom �lter queries are concerned solely with
the existence of a given value in the time-interval they spec-
ify; instead, error depends on the absolute amount of over-
lap the interval has with the window. False Positive proba-
bility gradually falls as overlap increases, asymptoting out
to the inherent False Positive rate the Bloom �lter is con�g-
ured with (1% in this case) for a full-window query.

7.4 Application traces

M-Lab network tra�c traces. We repeat the workload
Cui et al. used to evaluate Aperture [38], running frequency
queries (using a Count-Min sketch) to estimate visit frequen-
cies of various IP address in an M-Lab [38, 44] log.

Dataset. The entire Paris traceroute data collected by M-
Lab [44] in 2015, a log of 170M visits over a 1 year period.
Results. workload consists of frequency queries (using a
CMS) on various IP addresses in a log of client visits. Fig-
ure 13 shows error and CI width results at 5X compaction,
binned by query age and length. Error is less than 16% in all
minute-or-longer query classes, and less than 10% in all but
three. Second-length queries see errors up to 44%. CI width
stays below 13% in all but three minute-or-longer classes.
Latencies (not shown) were low, <30 ms for 95th %-ile.

IBMTivoli StorageManager backup traces.TSM retains
logs of actions performed in the system.We evaluate a work-
load of queries on this log collated by an IBM sysadmin [11],
consisting of a combination of sum, count and frequency
queries on time intervals of varying ages and lengths be-
tween 1 day and 1 month (e.g., how many bytes did node 7
upload over the past week?).
Dataset. We generated a corresponding synthetic dataset
simulating a population of 10,000 nodes performing stor-
age backups once every hour over a period of 7 years, each
backup failing with a certain probability (we set failure rate
to 1%), with backup sizes as per Wallace et al.[82].
Results. On all TSM queries we tested, we observed low er-
rors, with tight CIs, since the queries were all at fairly coarse
granularities (length at least a day). At 5X compaction, error
in all query classes was less than 2%, with the worst error
arising on queries with age = years, length = days. We omit
detailed per-query results for brevity.

8 Related Work

8.1 Time-Series Storage Systems

Most time–series stores [7, 18, 46, 50, 66, 74] enumerate raw
data. As such, the size of the stores grows linearly (or worse)
with data ingest and query latency is adversely a�ected. Some
of these stores [18, 66] maintain additional aggregations and
roll-ups to reduce query latency, further increasing the cost
to store data. These stores thus can write and read large vol-
umes of data but at signi�cant storage cost.
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8.2 Approximate-Query-Processing (AQP) Systems

AQP systems are the closest to SummaryStore in the set of
tradeo�s – performance and freshness [30], response time
and accuracy [17], and most notably, storage space and ac-
curacy [38] – they o�er for queries. AQP systems are be-
coming increasingly popular with the tremendous growth
in data volumes and the need for low latency.
BlinkDB [17] approximates by sampling; it constructsmulti-

dimensional strati�ed samples, over-representing rare sub-
groups relative to the uniform random sample. BlinkDB shares
SummaryStore’s goal in providing bounded errors and low
latency on large volumes of data but is not designed for time-
series data. Follow-up work tackles the challenges of error
estimation under sampling [16] and makes a strong case for
why reliable error bars are critical to AQP systems; Summa-
ryStore takes note of this challenge and proposes techniques
to reliably estimate error under temporal decay.
Succinct [15] supports a limited set of search queries on

strings stored in �at �les; it compresses �les using Com-
pressed Su�x Arrays, and subsequent sampling on the ar-
rays to achieve signi�cant compression for speci�c work-
loads. BlowFish [55] extends Succinct but creates multiple
levels of sampled arrays, for the same data, o�ering con�g-
urable tradeo� between storage size and performance. Both
Succinct and BlowFish are suitable primarily for search queries
on unstructured �les which, while useful, o�ers narrow func-
tionality. MacroBase [21] uses damped reservoir sampling [81]
over exponentially-damped windows, with an emphasis on
outlier detection in data streams; inline with this target use
case, the windows maintain a heavy-hitter counting sketch
data structure. QuickR [54] and JetStream [69] are also re-
cently proposed AQP systems for big data and wide area,
respectively, that leverage sampling and aggregation.
Broadly speaking, sampling is highly e�ective and has

been widely adopted in AQP systems with success. Sum-
maryStore demonstrates the utility of statistical summaries,
in addition to samples, to provide bounded-error, bounded-
capacity AQP on high-volume streaming data.
Similar to SummaryStore, Aperture [38] maintains aggre-

gate statistics per window for low-latency time-series analy-
sis but focuses on correlation search. Aperture treats all win-
dows homogeneously (i.e., no decay) and provides no tem-
poral bias. It supports only window-aligned queries which
is both limiting and side-steps the challenges in reliable er-
ror estimation. In spite of its limitations, Aperture is a step
forward towards stores designed for temporal analytics.

8.3 Time-Decayed Expiration in Storage Systems

Position papers on a delete-optimized store [24, 43] were
motivated by short object lifetimes in a streaming environ-
ment; the underlying assumptionwas that a substantial amount

of data is written to disk, read few times, and then quickly
deleted. For these ideas, the decay applied to the retention
value and not to the data; �les would be deleted in their
entirety when the value eroded. Contemporary time–series
stores support similar time expiration [8].
Palimpsest [73] is a store o�ering bounded duration of

�les: all storage is “soft capacity”, with no a priori guaran-
tees on the duration of persistence; �les can be reclaimed
automatically but are available and secure meanwhile. Un-
like “best-e�ort” expiry, SummaryStore decays the physical
allocation on a continuous basis through a predictable, al-
gorithmic process to control query errors. Hyperion [42]
shares the motivation of supporting retrospective querying
on archived data streams but emphasizes on performance.

8.4 Algorithmic Time-Decayed Representation

The Exponential Histogram (EH) [39] maintains exponen-
tially growing spans of time (1, 2, 4, · · · , 2 ⌈logN ⌉ ) for a sliding
window of N time units; data within a range is aggregated
as counts. While EH can be generalized to counting beyond
the sliding window, its construction forces an unacceptably-
aggressive decayed representation of data. TheWeight-Based
Merging Histogram (WBMH) [32] generalizes EH to track
arbitrary time-weighted counts in integer streams. They show
that for many weight functions it su�ces to maintain an
even more aggressive windowing than in EH; in particular,
they showhow to track approximate polynomiallyweighted
counts using power-of-k windowing with k ≥ 2 – the basis
for SummaryStore’s merge process.

9 Conclusions

While large volumes of time-series data are driving power-
ful analyses, storage systems are lagging behind. We have
built SummaryStore, the �rst of its kind approximate time–
series store that provides unprecedented (100x) cost savings
for data storage; we developed and implemented novel tech-
niques to ingest and decay data, and provide accurate query
responses on signi�cantly summarized data. SummaryStore
compacted a 1 PB dataset to 10 TB while answering 95% of
queries with less than 5% error, with median and worst-case
cold-cache latency 1.3s and 70s respectively. It was also able
to run real-world applications for forecasting and anomaly
detection on 6-10x compacted data while preserving the �-
delity of the analyses.
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A Decay functionproperties (described inTable 4)

We now establish how the number of windowsW used to
represent a stream grows as a function of the number of ele-
mentsN appended to the stream, for the two decay function
families in Table 4. The other properties in Table 4 follow im-
mediately: the size of the store (column 3) is simplyW × the
size of each window (which is a constant for a given stream
in SummaryStore); and the marginal storage alloted to the
nth oldest element (column 4) is the derivative ofW with
respect to N .

Power lawdecay. Consider the stream at the pointwhen,
for some K , the windows have lengths

for k = 1, 2, ...,K : R kp−1 of length S kq

and all windows are full. At this point, the total number of
windows is

W = R
(

1p−1 + 2p−1 + ... + Kp−1
)

= R

(

Kp

p
+ o

(

Kp )
)

and the total number of elements in the stream is

N = RS
(

1p+q−1 + 2p+q−1 + ... + Kp+q−1
)

= RS

(

Kp+q

p + q
+ o

(

Kp+q )
)

Approximating by assuming a large stream and ignoring
the lower-order terms, and eliminating the variable K, we
get

W ≈
(p + q)

p
p+q

p
R

(

N

RS

)

p
p+q

Exponential decay. Proceeding as with power law de-
cay, consider the state of the stream at the point when the
windows have lengths

for k = 1, 2, ...,K : R of length Sbk

and all windows are full. At this point, the number of win-
dows is given by

W = RK

and the total number of elements in the stream is

N = RS
(

b + b2 + ... + bK
)

= RS
bK+1 − 1
b − 1

Eliminating the variable K , we get

W = R

(

logb

(

(b − 1)
N

RS
+ 1

)

− 1
)

B Proofs for error estimators (described in §5)

To simplify notation, we present a sub-window query on a
single window (Figure 14) in this section; the results extend
naturally to queries spanning multiple windows.

Figure 14: Sub-window query.

Theorem B.1. In the absence of additional information lo-

calizing arrivals to speci�c positions in the window, given that

count[T1,T2] = C , the expected value of count[t1, t2] isC ∗t/T .

Proof. Divide [T1,T2] intoT/ϵ equally spaced sub-intervals
of length ϵ each. In the absence of localizing information,
the expected count of arrivals in each sub-interval must be
identical. Given that there wereC arrivals in total in [T1,T2],
by linearity of expectation the expected count of arrivals in
each sub-interval is C/(T/ϵ ) = ϵC/T . Since [t1, t2] overlaps
between ⌊t/ϵ⌋ and ⌈t/ϵ⌉ of these sub-intervals, the expected
value of count[t1, t2] approaches (t/ϵ ) ∗ (ϵC/T ) =C ∗ t/T as
ϵ → 0. �

Theorem B.2. In a Poisson stream

Pr(count[t1, t2] | count[T1,T2] = C ) ∼ Binom(C, t/T)

Proof. In a Poisson stream, conditioned on the fact that
there wereC arrivals in [T1,T2], the positions of the arrivals
have the same statistical distribution [36] as pickingC inde-
pendent uniform samples from [T1,T2], each of which has a
t/T chance of being inside the sub-interval [t1, t2]. Therefore
the distribution count[t1, t2] ∼ Binom(C, t/T ) with meanC
∗ t/T and variance C * t/T * (1 − t/T ). �

Theorem B.3. In a stream generated by a renewal-reward

process [36] with i.i.d. interarrivals with mean µt and stan-

dard deviation σt , and i.i.d. values with mean µv and stan-

dard deviation µv , given that count[T1,T2] =C and

sum[T1,T2] = S , in the limit as window sizes→ ∞ the poste-

rior distribution on sub-window count and sum approach the

bivariate normal distribution

N
*...
,

t

T



C

S



,
t

T

(

1 − t

T

)

T

µ3t



σ 2
t σ 2

t µv

σ 2
t µv (σ 2

t µ
2
v + σ

2
vµ

2
t )



+///
-

Proof. De�ne the random variables

(Ct , St ) := (count[t1, t2], sum[t1, t2])

(CT , ST ) := (count[T1,T2], sum[T1,T2])
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Standard renewal-theoretic approximations [36] state that
in the limit as window sizes go to in�nity

• (CT , ST ) is bivariate normal with

E[CT ] =
T

µt
E[ST ] =

µvT

µt

Var[CT ] =
σ 2
t t

µ3t
Var[ST ] =

(σ 2
t µ

2
v + σ

2
vµ

2
t )T

µ3t

Cov[CT , ST ] =
σ 2
t µvt

µ3t
• The sum and count in [t1, t2] are independent of the
sum and count in [T1, t1] and [t2,T2]. (They are weakly
coupled by the lone arrivals going over the interval
boundaries t1 and t2, whose e�ect becomes negligible
in the large window limit.)

Applying these two limiting approximations, and simpli-
fying, it can be shown that the joint distribution of the ran-
dom variables (Ct , St ,CT , ST ) is multivariate normal with
mean

µ̄ =



t
µt

µv t
µt

T
µt

µvT

µt


and covariance matrix

Σ̄ =
1

µ3t



σ 2
t t σ 2

t µvt σ 2
t t σ 2

t µvt

σ 2
t µv t (σ

2
t µ

2
v + σ

2
vµ

2
t )t σ 2

t µvt (σ 2
t µ

2
v + σ

2
vµ

2
t )t

σ 2
t t σ 2

t µvt σ 2
tT σ 2

t µvT

σ 2
t µv t (σ

2
t µ

2
v + σ

2
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2
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2
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2
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De�ning

K :=
1

µ3t



σ 2
t σ 2

t µv

σ 2
t µv (σ 2

t µ
2
v + σ

2
vµ

2
t )


this simpli�es to

Σ̄ =



tK tK

tK TK


Now conditioning on the knowledge that CT = C and

ST = S , (Ct , St | CT = C, ST = S ) is again bivariate normal
[12] with mean



t
µt

µv t
µt



+ (tK ) (TK )−1
*...
,



C

S



−



T
µt

µvT
µt



+///
-

=



t
T
C

t
T
S



and covariance

tK − (tK ) (TK )−1 (tK ) =
t

T

(

1 − t

T

)

TK �

The proof for count can be adapted to non-numeric streams:
we would simply consider a renewal process (without asso-
ciated reward) and restrict to considering the joint distribu-
tion of (Ct ,CT ).
Theorem B.3 subsumes Theorem B.2 in the large window

limit: in a Poisson stream, σt/µt = 1, and a standard re-
sult [57] states that as the number of arrivals goes to in�nity
the binomial distribution converges to the normal distribu-
tion with the same mean and variance.

Theorem B.4. In a Poisson stream of i.i.d. values, sup-

pose a frequency summary suggests V occurrences of a value

v in [T1,T2]. Then Pr(v ∈ [t1, t2]) = 1 − (1 − t/T )V .

Proof. Theorem B.2 showed that Pr(count[T1,T2]) ∼
Binom(N , t/T). Now

Pr(V ∈ [t1, t2]) = Pr(at least one occurence in [t1, t2])

= 1 − Pr(no occurences in [t1, t2])

= 1 − Pr(Binom(V , t/T) = 0)

= 1 − (1 − t/T)V �

Theorem B.5. In a stream generated by a renewal-reward

process with renewal-independent rewards, suppose

count[T1,T2] = C and freq(v )[T1,T2] = V . In the limit as

window sizes→ ∞, the posterior distribution on sub-window

frequency approaches

freq(v )[t1, t2]) → Hypergeom(C,V ,Ct )

where Ct ∼ the posterior distribution over count[t1, t2] from
Theorem B.3.

Proof. TherewereC arrivals in [T1,T2],Ct ofwhichwere
in [t1, t2], and V of which had value v . Since the stream is
i.i.d., the distribution over the count of arrivals which
were both in [t1, t2] and of value v has a hypergeometric
shape [57]. �

Note thatV might itself be a random variable, if a statisti-
cal characterization of the underlying frequency summary
is available. The expression Hypergeom(C,V ,Ct ) denotes a
compound distribution.

Corollary B.6. Under the same assumptions as Theorem

B.5, in the limit as window sizes→ ∞, the answer to the sub-
window existence query exists(v )[t1, t2] approaches

Pr(v ∈ [t1, t2]) → Pr (Hypergeom(C,V ,Ct ) > 0)

Proof. Follows from Theorem B.5 since

v ∈ [t1, t2] ⇐⇒ freq(v )[t1, t2] > 0 �
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