Learning with Less: Can Approximate Storage
Systems Save Learning From Drowning in Data?

Nitin Agrawal

Samsung Research

Abstract

Data empowers learning. But soon, we may have too much
of it to store, process, and analyze in a timely and cost-effective
manner. We take the position that approximate storage sys-
tems have a role to play in alleviating this problem. The pa-
per is intended to generate discussion on the merits and pit-
falls of data approximation, its applicability, and lack thereof,
to a variety of learning algorithms, and its broader appeal
to AL Tackling the challenges of large-scale data analysis
requires not only expertise in systems, but also in machine
learning, statistics, and algorithms. The paper borrows from
the lessons the authors learnt in building SummaryStore [4],

an approximate storage system capable of storing large streams

of time-series data (~100 Terabyte on a single node), while
preserving high degrees of accuracy and real-time querying
at unprecedented cost savings.

1 Introduction

Data has become a societal utility. Applications previously
unimaginable for computers to perform are becoming a re-
ality through fundamental innovations in natural language
processing, computer vision, voice agents, information re-
trieval, and search, among many others. Large-scale data
processing lies at the core for many of these advances. It
is also interesting to note that a significant fraction of the
data is being generated and consumed exclusively by ma-
chines; a human reader is rarely involved. Generation is in-
creasingly being dominated by sensors [5], wearables and
personal computing devices [27], and data centers [26]; con-
sumption is driven by algorithms for machine learning, an-
alytics, and Al at large [9, 17, 18, 22, 25, 28].

From a systems perspective, storing and accessing large
volumes of data has been a long-standing challenge but one
that the community has a firm grasp on and has developed
effective solutions for (8, 15]. Often, scaling-out storage with-
out compromising on the required semantics comes at a cost.

From a learning perspective, for large-scale data process-
ing, in addition to cost, the ability to perform computational
tasks in a timely manner is particularly relevant [23].

AlSys, 2017, Shanghai
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM... $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Ashish Vulimiri

Samsung Research

A principle methodology to speed-up such data-centric
computational tasks is to exploit their inherent parallelism
but, in spite of significant advances [1, 12, 16, 30], this ap-
proach is not universally applicable; several learning pro-
cesses are fundamentally hard to parallelize [21, 24]. Learn-
ing algorithms that operate on very large datasets often strug-
gle to keep up with the growth in data [11, 12]. The pa-
per raises the following motivating question: can approxi-
mate storage systems help alleviate the challenges of large-
scale data analysis for learning?

An approximate storage system maintains a compact rep-
resentation of the raw data that it is entrusted to store. A
number of approximate stores have been built [2-4, 10, 19,
20] each offering a different trade-off between storage con-
sumption, access latency, and query accuracy. Several of these
stores, such as BlinkDB [3], employ sampling as the basis
for approximation [2, 3, 19]; others, such as Aperture [10]
employ windowed aggregation; SummaryStore [4] proposes
time-decayed summaries as the primary abstraction for ap-
proximation; it maintains summaries that favor recent data
over older data and continually decay over time. The ma-
jority of these approximate stores have been designed with
big-data analytics, search, forecasting, outlier detection, and
time-series analysis as target applications.

Co-designing the lower-layer storage system in light of
the requirements of the higher-layer learning tasks offers
the potential of cost-effective low-latency data processing.
As an example, active disks [31] pioneered an early approach
to allow storage drives to execute application-level functions
directly in the device; applied in the context of large-scale
data mining, active disks provided reduced data traffic and
increased throughput by pushing some of the “intelligence”
down to the storage system. In the current context, the in-
telligence pushed down to the storage can form the basis for
the data approximation.

SummaryStore maintains compact summaries through ag-
gregates, samples, sketches, and other probabilistic data struc-
tures in lieu of raw data; its time-decayed scheme favors re-
cent data by allocating progressively fewer bytes for older
data thereby increasing the extent of approximation with
age. Initial results for analytics queries and machine-learning
forecasting with SummaryStore are promising [4]. In par-
ticular, Facebook’s Prophet forecasting engine [33] yielded
nearly the same forecast accuracy using SummaryStore for

https://doi.org/10.1145/nnnnnnn.nnnnnnn

AlSys, 2017, Shanghai

10x compaction on three real-world datasets from econom-
ics, climatology, and Internet traffic relative to a baseline
with no approximation. Outlier detection using SummaryS-
tore for Google’s cluster management dataset [35] required
about 6x less space for negligibly-low false positives. Un-
der microbenchmarks, a 100 Terabyte synthetic stream was
stored using only a Terabyte of disk space with 95%-ile error
below 5% for a variety of queries.

2 Opportunities and Challenges

We present potential avenues for exploration and solicit feed-
back from systems and machine-learning practitioners; this
list is by no means comprehensive.

Improve completion times of training tasks. Compact-
ing the input dataset fundamentally “improves” the learning
outcome by enabling the computations to complete faster
and more tasks to be performed in a given time duration.
Learning a new model is often an iterative process. It is
not uncommon for a machine learning expert to train tens
to hundreds of models before converging on an acceptable
one. Each iteration takes time and computing resources. If
each iteration, with the requisite tweaks to model parame-
ters, can be performed on an approximate subset of the input
dataset, the end-to-end process can be substantially sped up.
Reducing the I/O and memory footprint also helps in a
more balanced architecture. By reducing the memory require-
ments, more of the learning can be accomplished on a high-
performance single node before making the expensive tran-
sition to a distributed system. GPUs can further help algo-
rithms saturate single-node performance and finish quicker.
Of course, the scientific challenge is to ensure that the ap-
proximation is representative and the trained model does
not deviate too much from the one learnt on the entire dataset.

Enable learning on the edge. By reducing the compute
and I/O requirements, learning can be more efficiently and
frequently performed on resource-constrained “edge” devices.
While the cloud might continue to do the heavy lifting when
it comes to data processing and learning, the edge has an in-
creasingly greater role to play. Since data being generated at
the edge is growing faster than the network connectivity to
the very same edge devices, transferring all the data to the
cloud can become cost-prohibitive. Privacy concerns make
learning at the edge even more desirable; approximate data
storage systems naturally align with techniques for privacy-
preserving querying by using aggregates and summaries in-
stead of individual values [29].

Build more robust models. Various learning techniques
have explored algorithmic approximation as the source for
increased model robustness. Dropout [32] randomly drops

Nitin Agrawal and Ashish Vulimiri

neural network units and their connections from an expo-
nential number of “approximate” networks to prevent over-
fitting; this controlled compaction introduces positive attributes
like the system learning more robust features. Stochastic
gradient descent samples a subset of (summand) functions
at every step to reduce the computational footprint of ev-
ery iteration making it more effective for large-scale ma-
chine learning problems [7] compared to gradient descent.
SummaryStore demonstrated benefits of its approximation
scheme through Prophet’s forecasting evaluation; for the
Federal Reserve’s economic dataset [13], it exhibited a net
reduction in forecast error with approximate data. For the
workload, the decay diminished the effect of older outliers
in the stream and positively influenced the outcomes.

The selection of an approximation scheme, for different work-
loads and datasets, can be a challenge. Sampling is popular,
and effective, but suffers from several limitations. Uniform
sampling can unintentionally discard events of significant
interest to the learning algorithm. More sophisticated sam-
pling methods, e.g., stratified [34], take greater care to in-
clude rarer subgroups relative to the uniform random sam-
ple. Beyond sampling, other approximation techniques can
include algorithms for aggregation, statistical modeling, and
temporal decay. Aggregation can narrow down the scope
of the queries while statistical modeling can introduce addi-
tional errors in modeling; furthermore, rich statistical mod-
els, e.g., ARMA, can be fairly expensive to maintain [14] con-
tradicting the intent for approximation. Temporal decay can
be effective but does not necessarily apply to all workloads.

The tolerance of different learning algorithms to incom-
pleteness in the data will ultimately dictate the suitability of
approximation schemes; building general-purpose solutions
will be challenging both from systems and algorithmic view-
points. Approximation will also introduce errors in data ac-
cesses and any scheme will need to provide robust quantifi-
cation of errors; in some cases, this may be impossible. The
learning algorithms must also deal with the increased uncer-
tainty; perhaps error will need to be treated as a first-class
programming construct [6].

The premise that an abundance of data is putting an un-
desirable strain on compute and I/O resources for learning
algorithms is at odds with the desire to produce richer, more
accurate, models. As an example, the resurgence in deep
learning is in large measures driven by the ability to train
sophisticated models over huge amounts of data. We need
to understand if (data) approximation and (model) accuracy
can go hand in hand and have outlined a few challenges
and avenues for future exploration. Broader applicability of
SummaryStore, and approximate storage systems in general,
for a variety of machine-learning algorithms needs further
investigation and discourse.

Learning with Less: Can Approximate Storage Systems Save Learning From Drowning in Data?

References

(1]

(6]

(10]

[11]

[12]

—
—
w

[t

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-
scale machine learning. In OSDI, volume 16, pages 265-283, 2016.

R. Agarwal, A. Khandelwal, and I. Stoica. Succinct: Enabling queries
on compressed data. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15), pages 337-350, 2015.

S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and L. Stoica.
Blinkdb: queries with bounded errors and bounded response times on
very large data. In Proceedings of the 8th ACM European Conference
on Computer Systems, pages 29-42. ACM, 2013.

N. Agrawal and A. Vulimiri. Low-Latency Analytics on Colossal Data
Streams with SummaryStore. In Proceedings of the 26th ACM Sym-
posium on Operating Systems Principles (SOSP ’17), Shanghai, China,
October 2017. ACM.

M. P. Andersen and D. E. Culler. Btrdb: optimizing storage system
design for timeseries processing. In 14th USENLX Conference on File
and Storage Technologies (FAST 16), pages 39-52, 2016.

J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain< t>: A first-
order type for uncertain data. ACM SIGPLAN Notices, 49(4):51-66,
2014.

L. Bottou. Large-scale machine learning with stochastic gradient de-
scent. In Proceedings of COMPSTAT 2010, pages 177-186. Springer,
2010.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A Distributed
Storage System for Structured Data. In OSDI *06, pages 205-218, Seat-
tle, WA, Nov. 2006.

Cory Watson. Observability at Twitter. https://blog.twitter.com/2013/
observability-at-twitter, 2013.

H. Cui, K. Keeton, I. Roy, K. Viswanathan, and G. R. Ganger. Using data
transformations for low-latency time series analysis. In Proceedings of
the Sixth ACM Symposium on Cloud Computing, pages 395-407. ACM,
2015.

J. Dean. Large scale deep learning. In Keynote GPU Technical Confer-
ence, volume 3, page 2015, 2015.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et al. Large scale distributed deep net-
works. In Advances in neural information processing systems, pages
1223-1231, 2012.

Federal Reserve Economic Data. https://en.wikipedia.org/wiki/
Federal Reserve Economic_Data, 2017.

D. Freedman, R. Pisani, and R. Purves. Statistics. W. W. Norton and
Company Inc, New York, NY, first edition, 1978.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In
SOSP ’03, pages 29-43, Bolton Landing, NY, Oct. 2003.

K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B.
Gibbons, and O. Mutlu. Gaia: Geo-distributed machine learning ap-
proaching lan speeds. In NSDI ’17, 2017.

K. J. Jacob and D. Shasha. Fintime - a financial benchmark.

Jamie Wilkinson. Google Prometheus: A practical guide to
alerting at scale. https://docs.google.com/presentation/d/
1X1rKozAUuF2MVc1YXEIFWq9wkcWv3AxdldISLOH9Vik/edit#
slide=id.g598ef96a6_0_341, 2016.

S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaud-
huri, and B. Ding. Quickr: Lazily approximating complex adhoc
queries in bigdata clusters. 2016.

A. Khandelwal, R. Agarwal, and I. Stoica. Blowfish: dynamic storage-
performance tradeoff in data stores. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 485—
500, 2016.

[21]

[22

=

(23]

[24

[l

[25

[

[26]

[27

[

(28]

[29]

(30

=

—
w
—_

—

(32]

(33

[t

[34

=

(35]

AlSys, 2017, Shanghai

J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A. Gibson, and E. P.
Xing. Strads: a distributed framework for scheduled model parallel
machine learning. In Proceedings of the Eleventh European Conference
on Computer Systems, page 5. ACM, 2016.

Y. Koren. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 447-456. ACM, 2009.

Y. LeCun and M. Ranzato. Deep learning tutorial. In Tutorials in In-
ternational Conference on Machine Learning (ICML’13). Citeseer, 2013.
H. Li, A. Kadav, E. Kruus, and C. Ungureanu. Malt: distributed data-
parallelism for existing ml applications. In Proceedings of the Tenth
European Conference on Computer Systems, page 3. ACM, 2015.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit ap-
proach to personalized news article recommendation. In Proceedings
of the 19th international conference on World wide web, pages 661-670.
ACM, 2010.

Mike Keane. 1.5 Million Log Lines per
ond. http://www.bigdataeverywhere.com/files/chicago/
BDE-15MillionLogLinesPerSecond-KEANE.pdf, 2014.

The Rise of Consumer Health Wearables: Promises and Barriers.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737495/.

T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and
K. Veeraraghavan. Gorilla: a fast, scalable, in-memory time series data-
base. Proceedings of the VLDB Endowment, 8(12):1816-1827, 2015.

R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb:
protecting confidentiality with encrypted query processing. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 85-100. ACM, 2011.

R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised
learning using graphics processors. In Proceedings of the 26th annual
international conference on machine learning, pages 873-880. ACM,
2009.

E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. Active disks for
large-scale data processing. Computer, 34(6):68-74, 2001.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. Journal of machine learning research, 15(1):1929—
1958, 2014.

S.J. Taylor and B. Letham. Facebook open source project: Forecasting
at scale. https://github.com/facebookincubator/prophet, 2017.
Wikipedia. Stratified Sampling. https://en.wikipedia.org/wiki/
Stratified_sampling.

J. Wilkes. More Google cluster data. Google research blog,
Nov. 2011. Posted at http://googleresearch.blogspot.com/2011/11/
more-google-cluster-data.html.

Sec-

https://blog.twitter.com/2013/observability-at-twitter
https://blog.twitter.com/2013/observability-at-twitter
https://en.wikipedia.org/wiki/Federal_Reserve_Economic_Data
https://en.wikipedia.org/wiki/Federal_Reserve_Economic_Data
https://docs.google.com/presentation/d/1X1rKozAUuF2MVc1YXElFWq9wkcWv3Axdldl8LOH9Vik/edit#slide=id.g598ef96a6_0_341
https://docs.google.com/presentation/d/1X1rKozAUuF2MVc1YXElFWq9wkcWv3Axdldl8LOH9Vik/edit#slide=id.g598ef96a6_0_341
https://docs.google.com/presentation/d/1X1rKozAUuF2MVc1YXElFWq9wkcWv3Axdldl8LOH9Vik/edit#slide=id.g598ef96a6_0_341
http://www.bigdataeverywhere.com/files/chicago/BDE-15MillionLogLinesPerSecond-KEANE.pdf
http://www.bigdataeverywhere.com/files/chicago/BDE-15MillionLogLinesPerSecond-KEANE.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737495/
https://github.com/facebookincubator/prophet
https://en.wikipedia.org/wiki/Stratified_sampling
https://en.wikipedia.org/wiki/Stratified_sampling
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	Abstract
	1 Introduction
	2 Opportunities and Challenges
	References

