
More is Less: Reducing Latency via Redundancy

Ashish Vulimiri
UIUC

vulimir1@illinois.edu

Oliver Michel
University of Vienna

oliver.michel@univie.ac.at

P. Brighten Godfrey
UIUC

pbg@illinois.edu

Scott Shenker
UC Berkeley and ICSI

shenker@icsi.berkeley.edu

ABSTRACT
Low latency is critical for interactive networked appli-
cations. But while we know how to scale systems to in-
crease capacity, reducing latency — especially the tail of
the latency distribution — can be much more difficult.

We argue that the use of redundancy in the context
of the wide-area Internet is an effective way to convert a
small amount of extra capacity into reduced latency. By
initiating redundant operations across diverse resources
and using the first result which completes, redundancy
improves a system’s latency even under exceptional con-
ditions. We demonstrate that redundancy can signifi-
cantly reduce latency for small but critical tasks, and
argue that it is an effective general-purpose strategy
even on devices like cell phones where bandwidth is rel-
atively constrained.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral

General Terms
Performance, Reliability

1. INTRODUCTION
Low latency is important for humans. Even slightly

higher web page load times can significantly reduce vis-
its from users and revenue, as demonstrated by several
sites [21]. For example, injecting just 400 milliseconds
of artificial delay into Google search results caused the
delayed users to perform 0.74% fewer searches after 4-6

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

weeks [7]. A 500 millisecond delay in the Bing search en-
gine reduced revenue per user by 1.2%, or 4.3% with a 2-
second delay [21]. Human-computer interaction studies
similarly show that people react to small differences in
the delay of operations (see [12] and references therein).

Achieving consistent low latency is challenging. Mod-
ern applications are highly distributed, and likely to get
more so as cloud computing separates users from their
data and computation. Moreover, application-level op-
erations often require tens or hundreds of tasks to com-
plete — due to many objects comprising a single web
page [19], or aggregation of many back-end queries to
produce a front-end result [1,10]. This means individual
tasks may have latency budgets on the order of a few
milliseconds or tens of milliseconds, and the tail of the
latency distribution is critical. Thus, latency is a diffi-
cult challenge for networked systems: How do we make
the other side of the world feel like it is right here, even
under exceptional conditions?

One powerful technique to reduce latency is redun-
dancy : Initiate an operation multiple times, using as
diverse resources as possible, and use the first result
which completes. For example, a host may query mul-
tiple DNS servers in parallel to resolve a name. The
overall latency is the minimum of the delays across each
instance, thus potentially reducing both the mean and
the tail of the latency distribution. The power of this
technique is that it reduces latency precisely under the
most challenging conditions: when delays or failures are
unpredictable.

Redundancy has been employed in several past net-
worked systems: notably, as a way to deal with failures
in DTNs [15], and in a multi-homed web proxy over-
lay [3]. But beyond these specific research projects, re-
dundancy is typically eschewed across the Internet. We
argue this is a missed opportunity.

The contribution of this paper is to argue for redun-
dancy as a general technique for the wide-area Internet.
The combination of interactive applications, high la-
tency, and variability of latency make redundancy well
suited to this environment. Even in a well-provisioned

1

network where individual operations usually work, some
amount of uncertainty is pervasive and the demand for
consistent low latency outweighs the need to save band-
width which is today comparatively cheap.

To support this argument, in §3 we examine the cost
of redundancy. Since latency-bound tasks are likely to
be small, the overall overhead is small when workloads
are heavy-tailed; we show that flow-size distribution
measurements confirm this. We next set a benchmark
for when replication is useful from the perspective of
impact on network bandwidth, showing that replica-
tion may be cost-effective even in extremely conserva-
tive (cell phone) scenarios as long as we can save more
than 10 milliseconds per kilobyte of added traffic. In
§4, we show the benefits of replication can be orders
of magnitude larger than this threshold in a number
of common application scenarios. For example, query-
ing multiple DNS servers can reduce the fraction of re-
sponses later than 500 ms by 6.5×, while the fraction
later than 1.5 sec is reduced by 50×. We also discuss
applications to multipath routing, TCP connection es-
tablishment, and quality of service.

In summary, as system designers we typically build
scalable systems by avoiding unnecessary work. But we
argue that in the wide-area Internet, extra work is a
useful and elegant way to achieve robustness to unex-
pected conditions and consistently low latency.

2. RELATED WORK
Replication is used pervasively to improve reliability,

and in many systems to reduce latency. Distributed
job execution frameworks, for example, have used task
replication to improve response time, both as a pre-
emptive measure [2, 11] and to mitigate the impact of
stragglers [23].

Within networking, replication has been explored to
reduce latency in several specialized settings, includ-
ing replicating DHT queries to multiple servers [16] and
replicating transmissions (via erasure coding) to reduce
delivery time and loss probability in delay-tolerant net-
works [15, 20]. Replication has also been suggested as
a way of providing QoS prioritization and improving
latency and loss performance in networks capable of re-
dundancy elimination [14].

Perhaps closest to our work, Andersen et al. [3]’s
MONET system proxies web traffic through an over-
lay network formed out of multi-homed proxy servers.
While the primary focus of [3] is on adapting quickly
to changes in path performance, they replicate two spe-
cific subsets of their traffic: connection establishment
requests to multiple servers are sent in parallel (while
the first one to respond is used), and DNS queries are
replicated to the local DNS server on each of the multi-
homed proxy server’s interfaces. We show that repli-
cation can be useful in both these contexts even in the

absence of path diversity: we show that a significant
performance benefit can be obtained by sending multi-
ple copies of TCP SYNs to the same server on the same
path, and by replicating DNS queries to multiple public
servers over the same access link.

Most importantly, unlike all of the above work, our
point is that replication is a general technique that can
be applied in a variety of wide-area Internet applica-
tions. We argue that it can be used much more com-
monly, by studying the overhead associated with repli-
cating small flows, the necessary benefit for end-users,
and several use cases.

3. MORE IS LESS
In this section we discuss the efficacy of the gen-

eral approach of reducing latency via redundancy in the
wide-area Internet.1 Later (§4) we discuss specific ap-
plications.

3.1 Avoiding uncertainty
The key power of redundancy is to reduce uncertainty

without having to anticipate the cause of that uncer-
tainty. In general, assume we have multiple options
available to obtain a service — such as multiple servers,
multiple paths, or even multiple moments in time at
which to request service. If we can predict at a given
moment which of these options will perform correctly
with lowest latency, then we would simply execute that
option.

But perfect prediction of exceptional conditions, es-
pecially in large networked systems, is somewhere be-
tween difficult and impossible. Momentarily high uti-
lization on a server, delay due to virtualization [22], a
slow disk, absence of an object in a web or DNS cache,
network congestion, an attack like a fraudulent DNS re-
ply, and other abnormalities all impact the mean and
especially the tail of the latency distribution. Opera-
tions that fail can be retried, of course, but this adds
greater delay especially in the wide-area. And design-
ing systems which do not encounter such abnormalities
is difficult and expensive.

If, however, we execute multiple options in parallel
and use the fastest correct result, then we can avoid
these exceptional conditions unless they occur to all op-
tions simultaneously.

There are two key difficulties. First, we may not have
multiple truly independent options, so that exceptional
conditions are correlated across options. We later give
examples of wide-area applications that have sufficient
diversity across options (§4).

Second, redundancy involves more work and expense.
In §3.2, we argue that the overall increase in utilization
may be small, since latency-sensitive tasks are often a

1This discussion may repeat arguments in the introduction.
But that would be rather apropos, wouldn’t it?

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

in
cr

ea
se

 in
 t

ot
al

 lo
ad

Fraction of flows duplicated

Web server
Internet backbone link

Private datacenter
Public datacenter

Figure 1: Overhead of duplicating traffic.

small fraction of the total network load. In §3.3, we
consider the perspective of an individual user, arguing
that saving even a few milliseconds per extra KB of
traffic are worthwhile.

3.2 Overhead can be low
In general, operations that require consistent low la-

tency are likely to be small in the work they expend
per operation. Consider, for example, a flow across
the wide-area Internet: if the flow is significantly larger
than the network’s delay-bandwidth product, the to-
tal time it needs to complete will be dominated by
its throughput. When downloading a gigabyte movie
which may have minutes of buffer, a few hundred mil-
liseconds delay or loss of a few packets will likely go
unnoticed. Alizadeh et al. [1] have also noted that in a
number of data center applications, latency-critical jobs
are small. In such systems, the flows that are the most
likely to benefit from replication are also those that are
the least expensive to replicate.

Furthermore, if latency-critical operations are small,
then they will comprise a small fraction of the network’s
total work if the distribution of sizes is heavy-tailed,
which is a pervasive property in the Internet. Figure 1
shows the percentage increase in total network load that
would result if the smallest x% of all flows were dupli-
cated in four different settings: flows in a public [13] and
a private [6] data center, web service requests crossing
a university wide-area uplink [5], and an Internet back-
bone link [18]. In all cases it would be possible to du-
plicate at least the 33% smallest flows while increasing
the total load by only 2%.

Several caveats may limit or expand the scenarios in
which replication is useful. (1) In contrast to the gen-
eral rule above, some latency-sensitive tasks are large,
such as real-time video streams. Replication may still
be useful if these streams have low rate (§4.3) or are crit-
ical. (2) If overhead is high, it may be ameliorated in
several ways. A replicated request could be marked as
lower priority, so it can be dropped if it interferes with
other work, similar to [16]. Or only the most impor-
tant operations could be replicated; for example, a cloud
service provider could charge tenants a higher rate for
consistent low latency for important clients. (3) Even

if overhead is high, replication may be acceptable when
the system is under-utilized, as the wide-area Internet
typically is.

3.3 End-user cost-benefit analysis
We can estimate when replication is useful for an end-

user via the value of time and the cost of increased
utilization. The following calculations analyze only the
cost in terms of network bandwidth to users and providers,
and the benefit to a user.

For replication to make sense to an end-user, we need
`v ≥ b, where ` is the average latency savings in mil-
liseconds for each KB of added traffic, v is the dollar
value of one millisecond of latency reduction, and b is
the cost of added traffic per KB.

The value of time v is the most difficult to calculate.
It may be highly application-specific, and may depend
on mean or tail latency in ways best quantified by a hu-
man user study of quality of experience. But to obtain
a first approximation, we assume the value of time is
simply the US average earnings of $23.50 per hour in
June 2012 [17], which implies v ≈ 6.53 · 10−6 $/ms.

To estimate the cost per kilobyte b, we turn to adver-
tised rates for end-user and cloud service bandwidth.
For cell plans, we assume a user who has paid for ba-
sic connectivity already, and calculate the cost of band-
width from overage charges. For example, AT&T’s small-
est wireless data plan incurs $20 per 300 MB.

We can now solve ` ≥ b/v to obtain the break-even
point, in terms of the necessary latency savings per kilo-
byte of additional traffic2:

Connectivity plan Cost b Break-even benefit `
($/KB) (ms/KB)

AT&T, small cell 651.04 · 10−7 9.970
AT&T, large cell 95.37 · 10−7 1.460
T-Mobile Austria 9.67 · 10−7 0.148
AT&T DSL 1.91 · 10−7 0.029
EC2 and Azure clouds 1.20 · 10−7 0.018
MaxCDN 0.40 · 10−7 0.006

Note that in a connection between an end-user and
a service in the cloud, the latter’s bandwidth costs are
comparatively small. The table shows replication may
be cost-effective even in the most conservative connec-
tivity plan as long as we can save more than 10 mil-
liseconds (in the mean or tail, depending on the goal)
for each kilobyte of added traffic. We will see that the
benefit can be at least an order of magnitude greater
than this quantity.

4. EXAMPLES

4.1 Connection establishment
We start with a simple motivating example, demon-

strating why replication should be useful even when the

2These prices exclude the cost of energy, taxes, and fees.
Retrieved from the providers’ websites on 5 Oct 2012.

3

available choices are limited: we consider what happens
when multiple copies of a packet are sent on the same
path. It is obvious that this should help if all packet
losses on the path are independent. In this case, send-
ing two back-to-back copies of a packet would reduce
the probability of it being lost from p to p2. In prac-
tice, of course, back-to-back packet transmissions are
likely to observe a correlated loss pattern. But Chan
et al. [8] measured a significant reduction in loss prob-
ability despite this correlation. Sending back-to-back
packet pairs between PlanetLab hosts, they found that
the average probability of individual packet loss was
≈ 0.0048, and the probability of both packets in a back-
to-back pair being dropped was only ≈ 0.0007 – much
larger than the ∼ 10−6 that would be expected if the
losses were independent, but still 7× lower than the in-
dividual packet loss rate.3

As a concrete example, we quantify the improvement
that this loss rate reduction would effect on the time re-
quired to complete a TCP handshake. The three pack-
ets in the handshake are, by the metrics discussed in
§3, ideal candidates for replication: they make up an
insignificant fraction of the total traffic in the network,
and there is a high penalty associated with their being
lost (Linux and Windows use a 3 second initial timeout
for SYN packets; OS X uses 1 second [9]). We use the
loss probability statistics discussed above to estimate
the expected latency savings on each handshake.

We consider an idealized network model. Whenever
a packet is sent on the network, we assume it is de-
livered successfully after (RTT/2) seconds with prob-
ability 1 − p, and lost with probability p. Packet de-
liveries are assumed to be independent of each other.
p is 0.0048 when sending one copy of each packet, and
0.0007 when sending two copies of each packet. We also
assume TCP behavior as in the Linux kernel: an initial
timeout of 3 seconds for SYN and SYN-ACK packets
and of 3×RTT for ACK packets, and exponential back-
off on packet loss [9].

With this model, it can be shown that duplicating
all three packets in the handshake would reduce its ex-
pected completion time by approximately (3 + 3 + 3×
RTT)×(4.8−0.7) ms, which is at least 25 ms. If we as-
sume each packet is 50 bytes long, this implies a savings
of around 170 ms/KB, which is more than an order of
magnitude larger than the break-even latency savings
identified for the most expensive plan in §3.3. The ben-
efit increases with RTT , and is even higher in the tail.
Duplication would improve the 99.9th percentile hand-
shake completion time, for instance, by at least 880 ms,
for a latency savings of around 6000 ms/KB.

4.2 DNS
3It might be possible to do even better by spacing the trans-
missions of the two packets in the pair a few milliseconds
apart to reduce the correlation.

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Response time threshold (s)

1 server
2 servers
5 servers

10 servers

Figure 2: DNS response time distribution.

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

%
 la

te
nc

y
re

du
ct

io
n

Number of copies of each query

Mean
Median

95th %ile
99th %ile

Figure 3: Reduction in DNS response time, averaged
across 15 PlanetLab servers.

An ideal candidate for replication is a service that
involves small operations and which is replicated at
multiple locations, thus providing diversity across net-
work paths and servers, so that replicated operations
are quite independent.

We began with a list of 10 DNS servers4 and Alexa.com’s
list of the top 1 million website names. At each of 15
PlanetLab nodes across the continental US, we ran a
two-stage experiment: (1) Rank all 10 DNS servers in
terms of mean response time, by repeatedly querying a
random name at a random server. Note that this rank-
ing is specific to each PlanetLab server. (2) Repeatedly
pick a random name and perform a random one of 20
possible trials — either querying one of the ten individ-
ual DNS servers, or querying anywhere from 1 to 10 of
the best servers in parallel (e.g. if sending 3 copies of
the query, we send them to the top 3 DNS servers in the
ranked list). In each of the two stages, we performed
one trial every 5 seconds. We ran each stage for about
a week at each of the 15 nodes. Any query which took
more than 2 seconds was treated as lost, and counted
as 2 sec when calculating mean response time.

Figure 2 shows the distribution of query response
times across all the PlanetLab nodes. The improve-
ment is substantial, especially in the tail: Querying
10 DNS servers, the fraction of queries later than 500
ms is reduced by 6.5×, and the fraction later than 1.5

4The default local DNS server, plus public servers from
Level3, Google, Comodo, OpenDNS, DNS Advantage, Nor-
ton DNS, ScrubIT, OpenNIC, and SmartViper.

4

sec is reduced by 50×. Averaging over all PlanetLab
nodes, Figure 3 shows the average percent reduction in
response times compared to the best fixed DNS server
identified in stage 1. We obtain a substantial reduction
with just 2 DNS servers in all metrics, improving to 50-
62% reduction with 10 servers. Finally, we compared
performance to the best single server in retrospect, i.e.,
the server with minimum mean response time for the
queries to individual servers in Stage 2 of the experi-
ment, since the best server may change over time. Even
compared with this stringent baseline, we found a re-
sult similar to Fig. 3, with a reduction of 44-57% in the
metrics when querying 10 DNS servers.

Is this improvement worthwhile? Sending 10 DNS
queries instead of 1 costs < 4500 extra bytes for a la-
tency savings of 0.1 sec in the mean or 0.9 sec in the
99th percentile. This is roughly 20× better than the
most pessimistic break-even benefit in §3.3, meaning the
bandwidth cost is negligible. We also note that querying
multiple servers increases caching, a side-benefit which
would be interesting to quantify.

We note that prefetching – that is, preemptively ini-
tiating DNS lookups for all links on the current web
page – makes a similar tradeoff of increasing load to re-
duce latency, and its use is widespread. (Note, however,
that redundancy is complementary to prefetching, since
some names in a page will not have been present on the
previous page.)

4.3 Multipath routing
We now consider replication of packets in a large-scale

multi-path routing setting. This setting may be avail-
able in a future Internet environment, but also mim-
ics fairly closely (in topology and data rate) the Skype
overlay network [4], where consistent low latency is ben-
eficial.

We conducted experiments on three different overlay
topologies, each consisting of a source and a destina-
tion node connected via 8 intermediate nodes, yielding
8 distinct end-to-end paths. We used two topologies
spanning the US and one with the source and half the
intermediate nodes in Europe and the destination and
the remaining intermediate nodes in the US. Most of
these nodes were on PlanetLab, but in one topology
we used exclusively reserved ProtoGENI nodes for the
source and destination because the PlanetLab nodes we
used at first with were too heavily loaded (more on this
below). P2P applications such as Skype use similar
overlay topologies [4]: they relay traffic through inter-
mediate nodes to circumvent NAT and firewall issues.

Over the course of roughly 48 hours, we sent UDP
data packets at rates of r = 32kbit/s and r = 56kbit/s
over the m ∈ {1, 2, 3} best paths at that point in time.
The combinations of r and m were randomly chosen ev-

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000

Fr
ac

tio
n

la
te

r
th

an
 t

hr
es

ho
ld

Latency threshold (ms)

1 path
2 paths
3 paths

Figure 5: Latency Distribution in representative con-
tinental topology at r = 56kbit/s

ery minute. We used a simple-moving-average (SMA)5

with a window-size of 5 to rank the paths.
We observed a significant performance improvement

when using replication, despite the variation in factors
such as the topology, the data-rate, and the shape of the
latency distribution on each path. The only exception
was a single measurement in which replication seemed
to significantly degrade system performance. We be-
lieve this was due to heavy load on the sending Planet-
Lab node: when we switched it out for a lightly loaded
ProtoGENI node (we report the latter results here) we
again observed the same level of performance as in the
other experiments.

Most of the improvement we observe seems to come
from using two paths instead of one: adding a third path
typically produces only minor further improvement, if
any. While the improvement in the mean latency is rel-
atively small, replication significantly improves the la-
tency tail and reduces the packet-loss probability. Com-
pared to a single path we see better latencies starting
at the 95th percentile (Figure 5), and with just one ad-
ditional path the 99th percentile latency falls by about
60%.

The two data sending rates we tested, which are re-
alistic for real-time audio traffic, yielded more or less
identical behavior, but we expect that testing a larger
range of rates will reveal that replication ceases to help
when the data rate is sufficiently high. We leave an
investigation of this question to future work.

We note that the experiments we have conducted so
far are too small-scale to be representative – a much
more thorough evaluation would be necessary to prop-
erly quantify the performance benefits that replication
can yield. However, our results suggest that there are
reasonable scenarios in which replication can help.

4.4 Quality of service
Low latency is an important aspect of quality of ser-

vice (QoS) on the Internet. Traditional approaches

5In other experiments, not discussed here, we found that
SMA performed better than other common adaptive esti-
mators, including the exponentially-weighted moving aver-
age and several standard learning-theoretic algorithms.

5

mean 99%-ile 99.9%-ile
no. of paths 1 2 3 1 2 3 1 2 3

intra-U.S. 1 103.5ms 7.28% 6.3% 292.1ms 61.61% 59.62% loss 1846.8ms 1997.0ms
intra-U.S. 2 86.0ms 6.63% 6.41% 101.9ms 17.19% 17.19% 1888.5ms 95.04% 95.22%
trans-atlantic 142.1ms 4.02% 4.19% 233.7ms 37.26% 37.27% 594.9ms 69.52% 71.81%

Figure 4: Multipath routing: Measured RTTs in 56kbit/s experiment for 1 path and reduction when using repli-
cation (packets later than 4.5 seconds were considered lost)

to providing QoS (e.g. IntServ) involve relatively com-
plex signaling and packet scheduling mechanisms, lack
a proven pricing model, and have not seen widespread
deployment. Even if they were deployed, these mech-
anisms deal with only one cause of high latency (con-
gestion) to the exclusion of other unpredictable events
(router failure, buggy QoS implementations, physical
layer corruption, etc.).

Replication may be an effective means to obtain some
of the benefits of QoS. If multipath routing is available—
with multiple network providers, tunnels, or more ad-
vanced mechanisms in future Internet architectures—
then latency-sensitive traffic can be replicated along
these paths. Compared with traditional QoS, this scheme
(1) eases deployment, by requiring no data plane QoS
support and reusing existing pricing models based on
bandwidth volume; (2) can be flexibly applied to a sub-
set of traffic so only a small additional load is introduced
where it is most effective; (3) deals with any unpre-
dictable events, such as router failures, as long as they
are not correlated across the independent paths.

5. RESEARCH DIRECTIONS
Using redundancy as a common technique in the In-

ternet raises several interesting research directions.
Automating redundancy. Our analysis suggests that
redundancy is worthwhile even with relatively small im-
provements in delay, and thus, it may be worthwhile to
automate. One simple way would be, for example, to
replicate the first k packets of each TCP flow, for some
small k. Beyond this, can we automate redundancy to
reduce latency in wide-area application-level services?
Path selection. Instead of choosing paths (or servers)
based on their mean performance, it may be beneficial
to pick options that are as independent as possible to
minimize the chance of extremely poor performance or
failure along all options. Choosing a set of k paths
whose latency-tails are as “maximally independent” as
possible is an interesting systems and algorithmic prob-
lem.
Selfishness. Suppose users choose how much to repli-
cate while selfishly minimizing their latency. We have
constructed examples showing that the Nash equilib-
rium of such a process in a queueing system can be
worse than without replication. But can performance
seriously degrade? In practical systems, are end-host

costs (e.g., energy or uplink constraints) sufficient to
prevent poor outcomes?
Security. There are broader architectural reasons for
multiplicity beyond reducing latency. Just as redun-
dancy makes it harder for nature to cause a problem,
so it is harder for attackers to cause a problem. By repli-
cating DNS queries, for example, one may detect mali-
cious or incorrect responses. Can we design an Internet
with pervasive redundancy, improving both latency and
security?

6. ACKNOWLEDGEMENTS
We gratefully acknowledge the support of NSF grants

CNS 10-50146 and CNS 11-49895.

7. REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In SIGCOMM, 2010.

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Why let
resources idle? Aggressive cloning of jobs with Dolly. In USENIX HotCloud,
2012.

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. N. Rao.
Improving web availability for clients with MONET. In USENIX NSDI,
pages 115–128, Berkeley, CA, USA, 2005. USENIX Association.

[4] S. A. Baset and H. G. Schulzrinne. An analysis of the Skype peer-to-peer
internet telephony protocol. In IEEE INFOCOM, pages 1 –11, april 2006.

[5] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt. A
comparative analysis of web and peer-to-peer traffic. In WWW, WWW ’08,
pages 287–296, New York, NY, USA, 2008. ACM.

[6] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of
data centers in the wild. In IMC, pages 267–280, New York, NY, USA,
2010. ACM.

[7] J. Brutlag. Speed matters for Google web search, June 2009.
http://services.google.com/fh/files/blogs/google_delayexp.pdf.

[8] E. W. Chan, X. Luo, W. Li, W. W. Fok, and R. K. Chang. Measurement
of loss pairs in network paths. In IMC, pages 88–101, New York, NY, USA,
2010. ACM.

[9] J. Chu. Tuning TCP parameters for the 21st century.
http://www.ietf.org/proceedings/75/slides/tcpm-1.pdf, July 2009.

[10] P. Dixon. Shopzilla site redesign – we get what we measure, June 2009.
http:

//www.slideshare.net/shopzilla/shopzillas-you-get-what-you-measure-velocity-2009.
[11] C. C. Foster and E. M. Riseman. Percolation of code to enhance parallel

dispatching and execution. IEEE Trans. Comput., 21(12):1411–1415, Dec.
1972.

[12] W. Gray and D. Boehm-Davis. Milliseconds matter: An introduction to
microstrategies and to their use in describing and predicting interactive
behavior. Journal of Experimental Psychology: Applied, 6(4):322, 2000.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible data
center network. In ACM SIGCOMM, pages 51–62, New York, NY, USA,
2009. ACM.

[14] D. Han, A. Anand, A. Akella, and S. Seshan. RPT: re-architecting loss
protection for content-aware networks. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, NSDI’12, pages 6–6,
Berkeley, CA, USA, 2012. USENIX Association.

[15] S. Jain, M. Demmer, R. Patra, and K. Fall. Using redundancy to cope
with failures in a delay tolerant network. In ACM SIGCOMM, 2005.

[16] J. Li, J. Stribling, R. Morris, and M. Kaashoek. Bandwidth-efficient
management of DHT routing tables. In USENIX NSDI, 2005.

[17] U. D. of Labor. Economy at a glance. http://www.bls.gov/eag/eag.us.htm.
[18] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and W. Willinger.

TCP revisited: a fresh look at TCP in the wild. In IMC, pages 76–89, New
York, NY, USA, 2009. ACM.

[19] S. Ramachandran. Web metrics: Size and number of resources, May 2010.
https://developers.google.com/speed/articles/web-metrics.

[20] E. Soljanin. Reducing delay with coding in (mobile) multi-agent
information transfer. In Communication, Control, and Computing (Allerton), 2010
48th Annual Allerton Conference on, pages 1428–1433. IEEE, 2010.

[21] S. Souders. Velocity and the bottom line.
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html.

[22] J. Whiteaker, F. Schneider, and R. Teixeira. Explaining packet delays
under virtualization. ACM SIGCOMM Computer Communication Review,
41(1):38–44, January 2011.

[23] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving
MapReduce performance in heterogeneous environments. In USENIX OSDI,
pages 29–42, Berkeley, CA, USA, 2008. USENIX Association.

6

