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Abstract- This work deals with hyperspectral image
analysis in the absence of ground-truth. The method
adopts a projection pursuit (PP) procedure with entropy
index to reduce the dimensionality followed by Markov
Random Field (MRF) model based segmentation. Ordinal
optimization approach to PP determines a set of “ good
enough projections” with high probability the best among
which is chosen with the help of MRF model based seg-
mentation. The segmented output so obtained is labeled
with desired number of landcover classes in the absence of
ground-truth. While comparing with original hyperspectral
image the methodology outperforms principal component
analysis with respect to class separation as exhibited in the
illustration of an archive EO-1 hyperspectral image. The
technique is not a computational intensive as is usually
the case in hyperspectral image analysis. When training
samples are available, the segmented regions yields a
classified image with any cluster validation technique
viz.[12].

Index Terms: Projection pursuit, Entropy Index, Markov
Random Field and Ordinal optimization.

1 Introduction.

The Hyperion Sensor aboard the EO-1 spacecraft
provides high quality data with 30 meter spectral resolu-
tion over more than two hundred channels for analyzing
complex variability of landscape surface cover on earth.
Investigation have been reported for matching image
pixel spectra available from the hyperspectral data and
the standard library comprising reflectance characteristics
for large class of materials with some success [13]. In
classifying hyperspectral image data, the use of conven-
tional techniques which are suitable for multispectral data
have not yielded satisfactory results. This is because of
mathematical and practical limitations such as Huges
Phenomenon [5] and others. A solution to this is to reduce
the high dimensionality (corresponding to the number of
channels) to a moderate dimensionality to allow analysis

by computers as well as by users. Principal Component
Analysis (PCA), an exploratory data analysis technique is
the most common and conventional data reduction method,
generally used in the absence of any prior knowledge of a
scene. PCA is performed with the idea of capturing largest
variations in projections which are thought of as structured
but which often fails in practice. To carry out projection,
first a scalar projection score x for a data vectory along
a directionw is defined as an inner product ofw and y,
x = wTy which gives a reasonably good measure of
the performance of the projection directionw for a pixel
vectory. A natural approach for projecting the data set
in appropriate way is to evaluate the performance of the
projection by optimization based on the projection scores of
some index of “interestingness”, a parameter which is task
relevant and depends on the objective. This approach leads
to “projection persuit”(PP) technique, a term introduced by
Freidman and Tukey [2] that seeks out a linear projection
of the multivariate data onto a lower dimensional space by
means of optimization of the index of “interestingness”,
defined as projection index. In order to find the projection
optimal for our objective, we must first select an appropriate
“projection index”. In PCA, which is a special case of PP,
this index is the variance of the projection scores. Thus
PCA seeks projection that maximizes the signal sources.

PP as defined above, is the process of making such
selections (signals of interest) by local optimisation over
projection directions of some index of “interestingness”.
The index of interestingness has been designed purposely to
reveal clustering characteristics hidden in the multivariate
high dimensional data. When hyperspectral image data are
reduced to a moderate dimensionality with PP, one can go
for segmentation approach to classification to determine the
complex variability of landscape surface cover.

Some interesting Projection index available in
literature are due to Freidmen and Tukey [2], Huber [4],
Jones and Sibson [7], Chiang and Chang [1], Jimenez and
Landgrebe [8], and Ifarraeguerri and Chang [6] among
others. The Projection indices the above authors have
employed are of three types, viz.
1) class distance measure (e.g., Bhattacharya distance [8],
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The Friedman-Tukey Index [2]),
2) entropy index or information divergence index (Ifar-
raeguerri and Chang [6])
and 3) moment index (Jones and Sibson [7] and Chiang and
Chang [1]).

The concept of using entropy index emerges from
the statistical behaviour for very high dimensional data
sets in lower dimensions due to Renyi [11] and Huber
[4]. Projection is a convolution, which due to CLT tends
the data sets towards normality and thus their inherited
structures are lost. Among the distributions with mean
zero and unit variance, the usual order-1 entropy measure∫
−flogf is minimized when f has standard normal

density. Therefore the entropy measure based on this can be
used to calculate the tendency towards normality of the data
set. By employing this entropy index we shall be able to
identify “uninterestingness” as tendency towards normality
and deviation from it as otherwise. The analytical form of
the index as defined by Ifarraeguerri and Chang [6] is given
by
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whereg is equated with standard normal density andf is
the distribution estimated from the data set. Following such
a projection index Ifarreguerri and Chang [6] have reduced
the dimension from 210 to a meagre 11 for a256 × 256
HYDICE sensor scene. The component images resulted
from PCA and PP as exhibited in [6] show some potential
of the methodology. But the computation involved in such
a methodology is highly intensive although there is no men-
tion of it in [6]. It appears that computation time required
with such a methodology for a whole hyperspectral scene
which is usually of256 × 3128 with 242 channels would
be unrealistically large.

In the present work we adopt the Ifarraeguerri
and Chang’s [6] information divergence index for PP to
reduce the dimension “almost as good as optimally” with a
technique that leads to faster computaional time followed
by Markov Random Field (MRF) segmentation with the
resulting component images to identify the best projected
data for subsequent use for classification. Instead of deter-
mining best projection with whole data set, we replace “best
for sure” with “good enough with high probability”as per
ordinal optimization suggested by Ho [3]. This “softening
of the goal” eases computaional burden in our problem and
it is much easier to find best projection within top 100 than
to get best projection so that some meaningful solution
can be obtained in a resonable time. To do so we reduce
the search space from|W | = 8 × 105(= 256 × 3128) to
1000 random samples(= N, say) from the whole data set.
Then, the probability that at least one sample will yield

one of the best projection on the top 100(= n) is approx-
imately 0.1175 which is computed from the expression
1 − (1 − n

|W |)
N [3]. This implies that we need 1

0.1175 ≃ 8

iterations of the procedure (on the average) to gurantee that
our projection is among the 100 best projection. The set of
1000 samples that gives “good enough projection with high
probability” should unfold good enough separated clusters
from the high dimensional cloud which in turn would yield
the least energy in MRF segmentation scheme.

The MRF procedure we adopted here yields a
segmented output which subsequently can be clustered into
a specified number of classes in the absence of groundtruth.
The output so obtained only reveals different unidentified
classes. When groundtruth samples are provided it would
generate complete classified output by some cluster valida-
tion scheme. The originality of the paper lies in underlining
how PP can be exploited in a reasonable time frame with
MRF based segmentation and ordinal optimisation for
analysing hyperspectral images. A schematic representa-
tion of the methodology is exhibited in Fig. 1.

2 Projection Pursuit:

Projection pursuit procedure that we shall follow
has been proposed by Ifarraguerri and Chang [6] but for the
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completeness of the work, the methodology is briefly de-
scribed here. This approach relies on the belief that the “in-
teresting” projection vectors are located in or near the point
cloud and they can be approximated by the pixel spectrum
nearest to it in terms of the inner product defined above as
“projection score”. So to find the best projection, the whole
data set is simply projected along each pixel vector, their di-
vergence from normality is calculated in terms of the value
of the projection index, and the one that corresponds with
the highest value of the projection index is chosen as the
desired direction. After finding the direction as described,
other projections are searched at directions orthogonal to
it. The pre-reduction of dimensionality is done by using
PCA, and thus the dimension of the space is fixed in which
the projection is sought so that we need to search only that
number of different orthogonal directions as specified by
significant principal components.

A random sample from the hyperspectral image data
consisting ofN pixels, over d bands is arranged in a ma-
trix Xd×N . As an initial reduction of dimension, PCA is
performed using the well known “covariance free method”
[14] and firstk eigenvectors corresponding tok significant
principal components are stored inEd×k. Then the princi-
pal component transformed data matrix is obtained as

Zd×N = ETX, (3)

a copy of which is saved asZorig.
As described earlier, this procedure assumes that

some pixel spectrum inZ gives a fair approximation to
the optimal projection and moreover, optimality is regarded
here as least normality. From the construction ofZ, lth col-
umn of Z, viz., zl is the spectrum of thelth pixel in the
image. So we project the whole data set alongzl and take
the calculated projection score vectorp = ZT zl , the in-
dex i of pi ’s , (the components ofp) running from−N

2 to
N
2 . For comparison with the normal distribution we quan-
tize the normal distribution asq = (qi)N×1, qi =

∫
fdx,

wheref is the normal density and integration is taken from
(i − 1) × h to i × h, i running from−N

2 to N
2 and h is the

bin size (class interval), in the range (maximum pixel value-
minimum pixel value). The projection index is calculated as

J (l)(p,q) =
∑

pilog
pi

qi

+
∑

qilog
qi

pi

(4)

This procedure is carried out for all N pixels. Thel
for whichJ (l)(p,q) is maximum is then searched.

arg(max(J (l)(p,q))) = lbest (5)

Then the vectorzlbest
corresponding to thelthbest

pixel spectrum is termed as the optimal projection vector.
zlbest

is orthonormalized and is appended as a columnwr

of a matrixW.
wr =

zlbest

||zlbest
||

, (6)

Subsequently, to search for the directions orthogonal
to the columswr of W, at each stepZ is projected orthogo-
nal toW by the following

Z(new) = [I − W(WTW)−1WT]Z (7)

Z(new) is the newZ for the next iteration. This
whole procedure is carried outk times to obtain ak × k
matrix W. For the optimally projected data set, we perform

Zopt = WTZorig (8)

Again another random sample is taken asX and we
repeat the procedure for a specified number of times which
depends on the size of the sample and the degree of proxim-
ity (with the true solution) we want to attain by the formula
cited above, and by same reasoning, is certain to produce
one of the best solutions. The best solution (projection)
among all these iterations is identified in MRF based seg-
mentation scheme described below, the criteria being mini-
mum segmentation energy.

3 MRF model based segmentation
scheme

We follow the scheme of Sarkar et al. [12] in defin-
ing the MRF on a region adjacency graph(RAG) of initial
oversegmented regions- the details are omitted here. Our
discussion here is directed in formulating the energy func-
tion in MRF based segmentation approach. Minimizing this
energy function will result in a MAP estimate of the optimal
segmented image. We impose two constraints as per our no-
tion of optimal segmentation.
(i) An optimal segmented image regionRi should be uni-
form with respect to the measured characteristics as ob-
tained from the component channels. This implies that bet-
ter the revealation of the hidden clustering characteristics of
the high dimensional point cloud in lower dimension, more
uniform the segmented region.
(ii) Two distinct adjacent regionsRi andRj should be as
dissimilar as possible with respect to the measured charac-
teristic as evident from the selected component channels.

The multi-component channel image is initially
over-segmented into a set ofQ disjoint regions denoted
by R1 = R1(p), R2 = R2(p), ..., RQ = RQ(p), p =
1, 2, ..., P , where P is the number of component chan-
nels. Representing each regionRi as a node with multi-
component channel information, a RAG,Γ = (R, E) is de-
fined, whereR = {Ri; 1 ≤ i ≤ Q} is a set of nodes and E
is a set of edges connecting them. With appropriate neigh-
borhood system a MRF is defined (see details in [12]). The
posterior probability distribution is given by

P (X = x|Y = y) =
e−Ups(x|y)

Zps

(9)
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whereZps =
∑

x e−Ups(x|y). The events{X = x} and
{Y = y} represent respectively a specfic labelling configu-
ration and a specific realization. Since the energy function
Ups(x|y) is a sum of the clique potentialsVc(x|y), it is nec-
essary to select appropriate cliques and clique potential to
achieve the desired objective.

Incorporating the above two constraints we define
the clique potential (energy) function [12] by two processes,
Region ProcessH and Edge ProcessB as

Vc(x|H, B) = Vc(x|y) = ηijWi,j + θij(1 − ηij)Bij (10)

Here,Bij =
ninj

ni+nj
(Mi − Mj) ∗ (Mi − Mj)

′

and Wij = 1
νij

[
∑ni

k=1(Yik − Mi) ∗ (Yik − Mi)
′

+∑nj

k=1(Yjk − Mj) ∗ (Yjk − Mj)
′

].
Mi being the mean vector of regionRi consisting of

ni number of pixels.νij = ni + nj − 2 andηij is a binary
variable taking values 0 and 1.νij takes the value 1 when
the regions (in clique potential) are homogeneous with re-
spect to the multi-component channel pixel intensity values.
If not thenηij takes the value 0. It may be noted thatηij =
1 indicates thatxi = xj .

The parameterθij controls the weight to be given to
the two processes for regions involved in the cliquec.

A suitable comparative criterion among the ele-
ments of these two matricesBij andWij is necessary for
deciding the merging of two adjacent regions. Since the ra-
tio of Bij andWij can be expressed as

T 2 = (Mi−Mj)
′[(1/ni+1/nj)spooled]−1(Mi−Mj) (11)

wherespooled =
Si+Sj

νij
= Wij , the comparative criterion

needed here is based on Hotelling’sT 2 statistics.
Therefore, the regionsRi and Rj in the clique,

should be merged ifT 2 < Fα and the regions should not
be merged ifT 2 ≥ Fα, whereP [T 2 > Fα] = α [as in [12,
p. 1106]].

The segmented image so obtained is by minimiz-
ing the energy functionUps(x|H,B) =

∑
cǫC Vc(x|H,B)=∑

cǫC Vc(x|y) as described above.
It is obvious that more the revealtion of the hidden

clustering characterstics of the high dimensional data set by
PP in lower dimension the better is the segmented output
with lesser and lesser energy. Corresponding to every thou-
sand random samples chosen from the hyerpsectral image,
PP is performed and the projected data yields a number of
component images as per the order of the chosen lower di-
mension. Subsequently segmentation is performed for the
desired number (say,P ) of component images for each of
the iteration. Forn number of such iteraion (each with 1000
random sample)n sets of MRF based segmented image are
determined. The segmented image that yields the least en-
ergy is the best projected data set for the given hyperspectral
image. As said earlier we choose our search space 1000 ran-
dom sample instead of the full hyperspectral image of size
256 × 3128. With eight(= n) iterations only, each iteration

takes a small duration of time, we ensure that the segmented
output (with minimum energy) is among the best 100 cases.

In the absence of any supervised knowledge (training
samples), our MRF model based segmented output yields
hundreds of different regions as per similar pixel intensi-
ties in the component images. For example, a large forest
area comprising different types of clusters of trees of the
same species would unfold in the segmented output as a
number of regions corresponding to clusters of trees of the
same species which have similar intensity. But as the in-
tensities of the clusters of trees of different species are not
expected to be grossly different the fragmented segments
can be tuned (grouped) into a single class and identified as
forest in accordance with some supervised knowledge, if
available. In the same way, crop areas and fallows etc also
comprise fragmented regions as per similar pixel intensities
which may be combined. This implies that our MRF model
based segmented output can be tuned into a desirable num-
ber of classes in the absence of any ground truth knowledge.
This is a kind of unsupervised crude cluster validation tech-
nique. However, the above tuned output that corresponds to
the desired number of classes remains unidentified with the
set of natural landcover classes of the scene in the absence
of ground truth. But it renders a means of comparison in
a crude way between a classified image of an unsupervised
classifier and a supervised classifier.

The simple technique that we follow for such a tun-
ing comprises two steps with inputs as the segmented image
and one component image and is carried out as follows

1) Determine maximum and minimum value of re-
gion means in segmented (region) output. Let those values
beMmax andMmin.

2) For each region meanMj in the region output we
fill the region following the condition if

(Mj − Mmin) ≤
i × (Mmax − Mmin)

Nc

(12)

whereNc is the desire number of classes,
thenG = 255− (i−1)×255

Nc−1 whereG is the new gray value
for entire segment (region) andi iterates through 1 toNc.

The tuned segmented output thus exhibits the differ-
ent regions in as many gray shades as the desire number of
classes. In order to make the regions (classes) of the images
more vivid and distinct we subsequently use the technique
of Jinxiu et al [9] from gray to pseudocolor.

4 Experimental Results

The data analysed in this paper is an archive image
data acquired from NASA, EO-1 satellite (Hyperion sensor)
over the area specified by the co-ordinates UL(23.5628N,
87.4528E), UR(23.5478N, 87.5259E), LL(22.7796N,
87.2651E), and LR(22.7647N, 87.3377E) of West Bengal,
India. The area was imaged on 17 January 2003. The
hyperspecral image is of size256 × 3128 with 220 bands
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covering the portion of the spectrum of wavelength 400-
2500 nm with an window size of 10nm.

The archive image data had been preprocessed
for atmospheric correction with Geomatica. Those bands
which had a DN of zero and corrupted with noise have been
removed and finally 143 bands have been used as an input
to our methodology for unsupervised labelling. The bands
used are ([12-52, 77-120, 143-164 ,189-224])

Since the pass date was 17 January, the crops that
are usually cultivated in the aforementioned area during
this period are potato (three varieties), mustard (scanty),
vegetables (cauliflower, brinjal, cabbage, bittergourd etc).
Besides, the landcover of the area comprises meadows,
paddy stubbles, isolated areas that are being ploughed for
next crop, small pockets of homestead, shrubs, small rivers
with shallow water and deep water in parts, sand in the
river banks, cluster of trees of different species along the
river banks and isolated laterite areas among others. The
number of classes would be around thirty odd or so as exact
groundtruth was not available.

At step 1, PCA has been carried out with whole
set of image data that is, with256 × 3128 pixels each
having 143 bands. From PCA, the first 15 component
images, that take into account99.9% of the total variation
have been considered for further processing. In the next
step, as described in section 2, PP has been performed
with a random sample of 1000 pixels taken from the 15
component images. As described earlier, such an iteration
(of carrying out PP with 1000 randomly chosen sample)
has been executed 8 times to determine “good enough
projection with high probability”. To determine the best
projection among these eight cases, the MRF model based
segmentation procedure with the projected data (component
image) has been carried out for each iteration. MRF based
segmentation procedure on each of the eight cases yields
a homogenity (uniformity) measure (value of the energy
function associated with the underlying MRF).

The one which yields least energy (implying the
best partitioning) in the segmentation stage gives us the
desired case. After carrying out PP on all the 15 component
images derived from PCA, we note that the last few (five
in the present case) component images (orthogonal to one
another) carry no significant information. Thus MRF model
based segmentation has been carried out on 10 component
images derived from PP.

In the absence of groundtruth samples, as in the
case of our present study, tuning of the segmented output
is carried out with desired number of landcover classes
and is exhibited with a pseudo colour code [9]. Fig.
2(a) and 2(b) respectively exhibit the original image and
the segmented output based on PCA component images
labelled with 30 classes. In Fig. 3(a) and 3(b), we show
two segmented outputs based on PP projected component
images with minimum and maximum energy respectively
for the 8 iterations and are labelled with as many classes
as of Fig. 2(b). Although the pseudo colors of the regions

appears to be similar in Fig. 2(b), 3(a) and 3(b) but there
are 30 different shades of color. We note that the course
of the river in the top part is very distinct only in Fig.
3(a). Likewise the course of the three other rivers are also
distinctly visible in Fig. 3(a) as compared to Fig. 2(b) and
Fig. 3(b). This fact entails that the complex variability
of the landscape cover surface is expected to segregate
appropriately in Fig. 3(a). In order to examine the above,
a similar subset of each of the Fig. 2(b), 3(a) and 3(b)
are compared respectively in Fig. 4(a), 4(b) and 4(c). In
Fig. 4(a) we have eight different regions while in Fig
4(b) and Fig 4(c) there are nine although the study area
covered are the same in the three figures. This fact only
explains, as said above that the separation of classes is
best determined in Fig. 4(b) and Fig. 4(c). Further, the
segments displayed are most vivid in Fig 4(b) as compared
to that of Fig 4(a) and Fig 4(c). In particular, the different
crop regions, the canal and the bridge over the river are
best identified in Fig 4(b). This figure (Fig 4(b)) is the
segmented output that yields the minimum energy for the
number of iterations considered and hence one of the best
projection onto the lower dimension and thus brings out
the potential of the methodology. When labelled with
desired number of classes this labelled image may be
compared with any supervised classification technique.
After PCA is performed, each iteration comprising PP and
MRF segmentation takes 7 minutes 22 seconds on a Intel
Pentium D 3.00GHz CPU.

5 Conclusion

PP procedure with information divergence index
identifies some collection of projection based on ran-
domly chosen samples. When coupled with MRF model
based segmentation procedure it determines the “good
enough projection” with high probability through ordinal
optimization. The proposed methodology appears to be
a potential methodology for hyperspectral image data
analysis as is evident from the experimental results. By
tuning the segmented output to a desired number of classes
a visual comparison is possible with the original image in
the absence of any groundtruth knowledge. The experi-
mental results suggests that the complex variability of the
landscape surface cover over earth has been potentially
analysed with the proposed methodology. When detail
groundtruth is available a cluster validation technique may
be adopted to determine classification accuracy of the
complex variablity of landscape surface cover on earth. In
cluster validation stage the same groundtruth sample size as
is usually gathered for multispectral imagery would work,
thus reducing the “curse of dimensionality” in this aspect.
The methodology is not computationally intensive.
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